No Arabic abstract
Metapopulation models have been a powerful tool for both theorizing and simulating epidemic dynamics. In a metapopulation model, one considers a network composed of subpopulations and their pairwise connections, and individuals are assumed to migrate from one subpopulation to another obeying a given mobility rule. While how different mobility rules affect epidemic dynamics in metapopulation models has been much studied, there have been relatively few efforts on systematic comparison of the effects of simple (i.e., unbiased) random walks and more complex mobility rules. Here we study a susceptible-infected-susceptible (SIS) dynamics in a metapopulation model, in which individuals obey a parametric second-order random-walk mobility rule called the node2vec. We map the second-order mobility rule of the node2vec to a first-order random walk in a network whose each node is a directed edge connecting a pair of subpopulations and then derive the epidemic threshold. For various networks, we find that the epidemic threshold is large (therefore, epidemic spreading tends to be suppressed) when the individuals infrequently backtrack or infrequently visit the common neighbors of the currently visited and the last visited subpopulations than when the individuals obey the simple random walk. The amount of change in the epidemic threshold induced by the node2vec mobility is in general not as large as, but is sometimes comparable with, the one induced by the change in the overall rate at which individuals diffuse from one subpopulation to another.
The metapopulation framework is adopted in a wide array of disciplines to describe systems of well separated yet connected subpopulations. The subgroups or patches are often represented as nodes in a network whose links represent the migration routes among them. The connections have been so far mostly considered as static, but in general evolve in time. Here we address this case by investigating simple contagion processes on time-varying metapopulation networks. We focus on the SIR process and determine analytically the mobility threshold for the onset of an epidemic spreading in the framework of activity-driven network models. We find profound differences from the case of static networks. The threshold is entirely described by the dynamical parameters defining the average number of instantaneously migrating individuals and does not depend on the properties of the static network representation. Remarkably, the diffusion and contagion processes are slower in time-varying graphs than in their aggregated static counterparts, the mobility threshold being even two orders of magnitude larger in the first case. The presented results confirm the importance of considering the time-varying nature of complex networks.
Random walks have been proven to be useful for constructing various algorithms to gain information on networks. Algorithm node2vec employs biased random walks to realize embeddings of nodes into low-dimensional spaces, which can then be used for tasks such as multi-label classification and link prediction. The usefulness of node2vec in these applications is considered to be contingent upon properties of random walks that the node2vec algorithm uses. In the present study, we theoretically and numerically analyze random walks used by the node2vec. The node2vec random walk is a second-order Markov chain. We exploit the mapping of its transition rule to a transition probability matrix among directed edges to analyze the stationary probability, relaxation times, and coalescence time. In particular, we provide a multitude of evidence that node2vec random walk accelerates diffusion when its parameters are tuned such that walkers avoid both back-tracking and visiting a neighbor of the previously visited node, but not excessively.
Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-world, Barabasi-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.
can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from further spreading. Simulation results and numerical analyses based on the pairwise approach indicate that the information-driven adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the epidemic prevalence at the final state significantly. In addition, the disease spreading and information diffusion pattern on the lattice give a visual representation about how the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore, we perform the local bifurcation analysis on four types of dynamical regions, including healthy, oscillatory, bistable and endemic, to understand the evolution of the observed dynamical behaviors. This work may shed some lights on understanding how information affects human activities on responding to epidemic spreading.
Metapopulation epidemic models describe epidemic dynamics in networks of spatially distant patches connected with pathways for migration of individuals. In the present study, we deal with a susceptible-infected-recovered (SIR) metapopulation model where the epidemic process in each patch is represented by an SIR model and the mobility of individuals is assumed to be a homogeneous diffusion. Our study focuses on two types of patches including high-risk and low-risk ones, in order to evaluate intervention strategies for epidemic control. We theoretically analyze the intervention threshold, indicating the critical fraction of low-risk patches for preventing a global epidemic outbreak. We show that targeted intervention to high-degree patches is more effective for epidemic control than random intervention. The theoretical results are validated by Monte Carlo simulation for synthetic and realistic scale-free patch networks. Our approach is useful for exploring better local interventions aimed at containment of epidemics.