Do you want to publish a course? Click here

Intervention Threshold for Epidemic Control in Susceptible-Infected-Recovered Metapopulation Models

86   0   0.0 ( 0 )
 Added by Akari Matsuki
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metapopulation epidemic models describe epidemic dynamics in networks of spatially distant patches connected with pathways for migration of individuals. In the present study, we deal with a susceptible-infected-recovered (SIR) metapopulation model where the epidemic process in each patch is represented by an SIR model and the mobility of individuals is assumed to be a homogeneous diffusion. Our study focuses on two types of patches including high-risk and low-risk ones, in order to evaluate intervention strategies for epidemic control. We theoretically analyze the intervention threshold, indicating the critical fraction of low-risk patches for preventing a global epidemic outbreak. We show that targeted intervention to high-degree patches is more effective for epidemic control than random intervention. The theoretical results are validated by Monte Carlo simulation for synthetic and realistic scale-free patch networks. Our approach is useful for exploring better local interventions aimed at containment of epidemics.



rate research

Read More

Cator and Van Mieghem [Cator E, Van Mieghem P., Phys. Rev. E 89, 052802 (2014)] stated that the correlation of infection at the same time between any pair of nodes in a network is non-negative for the Markovian SIS and SIR epidemic models. The arguments used to obtain this result rely strongly on the graphical construction of the stochastic process, as well as the FKG inequality. In this note we show that although the approach used by the authors applies to the SIS model, it cannot be used for the SIR model as stated in their work. In particular, we observe that monotonicity in the process is crucial for invoking the FKG inequality. Moreover, we provide an example of simple graph for which the nodal infection in the SIR Markovian model is negatively correlated.
Understanding spreading dynamics will benefit society as a whole in better preventing and controlling diseases, as well as facilitating the socially responsible information while depressing destructive rumors. In network-based spreading dynamics, edges with different weights may play far different roles: a friend from afar usually brings novel stories, and an intimate relationship is highly risky for a flu epidemic. In this article, we propose a weighted susceptible-infected-susceptible model on complex networks, where the weight of an edge is defined by the topological proximity of the two associated nodes. Each infected individual is allowed to select limited number of neighbors to contact, and a tunable parameter is introduced to control the preference to contact through high-weight or low-weight edges. Experimental results on six real networks show that the epidemic prevalence can be largely promoted when strong ties are favored in the spreading process. By comparing with two statistical null models respectively with randomized topology and randomly redistributed weights, we show that the distribution pattern of weights, rather than the topology, mainly contributes to the experimental observations. Further analysis suggests that the weight-weight correlation strongly affects the results: high-weight edges are more significant in keeping high epidemic prevalence when the weight-weight correlation is present.
Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-world, Barabasi-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.
We study the effect of heterogeneous temporal activations on epidemic spreading in temporal networks. We focus on the susceptible-infected-susceptible (SIS) model on activity-driven networks with burstiness. By using an activity-based mean-field approach, we derive a closed analytical form for the epidemic threshold for arbitrary activity and inter-event time distributions. We show that, as expected, burstiness lowers the epidemic threshold while its effect on prevalence is twofold. In low-infective systems burstiness raises the average infection probability, while it weakens epidemic spreading for high infectivity. Our results can help clarify the conflicting effects of burstiness reported in the literature. We also discuss the scaling properties at the transition, showing that they are not affected by burstiness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا