Do you want to publish a course? Click here

NEUROSPF: A tool for the Symbolic Analysis of Neural Networks

115   0   0.0 ( 0 )
 Added by Muhammad Usman
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper presents NEUROSPF, a tool for the symbolic analysis of neural networks. Given a trained neural network model, the tool extracts the architecture and model parameters and translates them into a Java representation that is amenable for analysis using the Symbolic PathFinder symbolic execution tool. Notably, NEUROSPF encodes specialized peer classes for parsing the models parameters, thereby enabling efficient analysis. With NEUROSPF the user has the flexibility to specify either the inputs or the network internal parameters as symbolic, promoting the application of program analysis and testing approaches from software engineering to the field of machine learning. For instance, NEUROSPF can be used for coverage-based testing and test generation, finding adversarial examples and also constraint-based repair of neural networks, thus improving the reliability of neural networks and of the applications that use them. Video URL: https://youtu.be/seal8fG78LI



rate research

Read More

XDeep is an open-source Python package developed to interpret deep models for both practitioners and researchers. Overall, XDeep takes a trained deep neural network (DNN) as the input, and generates relevant interpretations as the output with the post-hoc manner. From the functionality perspective, XDeep integrates a wide range of interpretation algorithms from the state-of-the-arts, covering different types of methodologies, and is capable of providing both local explanation and global explanation for DNN when interpreting model behaviours. With the well-documented API designed in XDeep, end-users can easily obtain the interpretations for their deep models at hand with several lines of codes, and compare the results among different algorithms. XDeep is generally compatible with Python 3, and can be installed through Python Package Index (PyPI). The source codes are available at: https://github.com/datamllab/xdeep.
Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVIS, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks.
Verifying and explaining the behavior of neural networks is becoming increasingly important, especially when they are deployed in safety-critical applications. In this paper, we study verification problems for Binarized Neural Networks (BNNs), the 1-bit quantization of general real-numbered neural networks. Our approach is to encode BNNs into Binary Decision Diagrams (BDDs), which is done by exploiting the internal structure of the BNNs. In particular, we translate the input-output relation of blocks in BNNs to cardinality constraints which are then encoded by BDDs. Based on the encoding, we develop a quantitative verification framework for BNNs where precise and comprehensive analysis of BNNs can be performed. We demonstrate the application of our framework by providing quantitative robustness analysis and interpretability for BNNs. We implement a prototype tool BDD4BNN and carry out extensive experiments which confirm the effectiveness and efficiency of our approach.
Probabilistic software analysis aims at quantifying the probability of a target event occurring during the execution of a program processing uncertain incoming data or written itself using probabilistic programming constructs. Recent techniques combine symbolic execution with model counting or solution space quantification methods to obtain accurate estimates of the occurrence probability of rare target events, such as failures in a mission-critical system. However, they face several scalability and applicability limitations when analyzing software processing with high-dimensional and correlated multivariate input distributions. In this paper, we present SYMbolic Parallel Adaptive Importance Sampling (SYMPAIS), a new inference method tailored to analyze path conditions generated from the symbolic execution of programs with high-dimensional, correlated input distributions. SYMPAIS combines results from importance sampling and constraint solving to produce accurate estimates of the satisfaction probability for a broad class of constraints that cannot be analyzed by current solution space quantification methods. We demonstrate SYMPAISs generality and performance compared with state-of-the-art alternatives on a set of problems from different application domains.
84 - Xu Cheng , Xin Wang , Haotian Xue 2021
This paper proposes a hypothesis for the aesthetic appreciation that aesthetic images make a neural network strengthen salient concepts and discard inessential concepts. In order to verify this hypothesis, we use multi-variate interactions to represent salient concepts and inessential concepts contained in images. Furthermore, we design a set of operations to revise images towards more beautiful ones. In experiments, we find that the revised images are more aesthetic than the original ones to some extent.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا