Do you want to publish a course? Click here

XDeep: An Interpretation Tool for Deep Neural Networks

89   0   0.0 ( 0 )
 Added by Fan Yang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

XDeep is an open-source Python package developed to interpret deep models for both practitioners and researchers. Overall, XDeep takes a trained deep neural network (DNN) as the input, and generates relevant interpretations as the output with the post-hoc manner. From the functionality perspective, XDeep integrates a wide range of interpretation algorithms from the state-of-the-arts, covering different types of methodologies, and is capable of providing both local explanation and global explanation for DNN when interpreting model behaviours. With the well-documented API designed in XDeep, end-users can easily obtain the interpretations for their deep models at hand with several lines of codes, and compare the results among different algorithms. XDeep is generally compatible with Python 3, and can be installed through Python Package Index (PyPI). The source codes are available at: https://github.com/datamllab/xdeep.



rate research

Read More

168 - Sebastian Ruder 2017
Multi-task learning (MTL) has led to successes in many applications of machine learning, from natural language processing and speech recognition to computer vision and drug discovery. This article aims to give a general overview of MTL, particularly in deep neural networks. It introduces the two most common methods for MTL in Deep Learning, gives an overview of the literature, and discusses recent advances. In particular, it seeks to help ML practitioners apply MTL by shedding light on how MTL works and providing guidelines for choosing appropriate auxiliary tasks.
This paper presents NEUROSPF, a tool for the symbolic analysis of neural networks. Given a trained neural network model, the tool extracts the architecture and model parameters and translates them into a Java representation that is amenable for analysis using the Symbolic PathFinder symbolic execution tool. Notably, NEUROSPF encodes specialized peer classes for parsing the models parameters, thereby enabling efficient analysis. With NEUROSPF the user has the flexibility to specify either the inputs or the network internal parameters as symbolic, promoting the application of program analysis and testing approaches from software engineering to the field of machine learning. For instance, NEUROSPF can be used for coverage-based testing and test generation, finding adversarial examples and also constraint-based repair of neural networks, thus improving the reliability of neural networks and of the applications that use them. Video URL: https://youtu.be/seal8fG78LI
It is commonly believed that the hidden layers of deep neural networks (DNNs) attempt to extract informative features for learning tasks. In this paper, we formalize this intuition by showing that the features extracted by DNN coincide with the result of an optimization problem, which we call the `universal feature selection problem, in a local analysis regime. We interpret the weights training in DNN as the projection of feature functions between feature spaces, specified by the network structure. Our formulation has direct operational meaning in terms of the performance for inference tasks, and gives interpretations to the internal computation results of DNNs. Results of numerical experiments are provided to support the analysis.
Blanking processes belong to the most widely used manufacturing techniques due to their economic efficiency. Their economic viability depends to a large extent on the resulting product quality and the associated customer satisfaction as well as on possible downtimes. In particular, the occurrence of increased tool wear reduces the product quality and leads to downtimes, which is why considerable research has been carried out in recent years with regard to wear detection. While processes have widely been monitored based on force and acceleration signals, a new approach is pursued in this paper. Blanked workpieces manufactured by punches with 16 different wear states are photographed and then used as inputs for Deep Convolutional Neural Networks to classify wear states. The results show that wear states can be predicted with surprisingly high accuracy, opening up new possibilities and research opportunities for tool wear monitoring of blanking processes.
Deep neural networks have yielded superior performance in many applications; however, the gradient computation in a deep model with millions of instances lead to a lengthy training process even with modern GPU/TPU hardware acceleration. In this paper, we propose AutoAssist, a simple framework to accelerate training of a deep neural network. Typically, as the training procedure evolves, the amount of improvement in the current model by a stochastic gradient update on each instance varies dynamically. In AutoAssist, we utilize this fact and design a simple instance shrinking operation, which is used to filter out instances with relatively low marginal improvement to the current model; thus the computationally intensive gradient computations are performed on informative instances as much as possible. We prove that the proposed technique outperforms vanilla SGD with existing importance sampling approaches for linear SVM problems, and establish an O(1/k) convergence for strongly convex problems. In order to apply the proposed techniques to accelerate training of deep models, we propose to jointly train a very lightweight Assistant network in addition to the original deep network referred to as Boss. The Assistant network is designed to gauge the importance of a given instance with respect to the current Boss such that a shrinking operation can be applied in the batch generator. With careful design, we train the Boss and Assistant in a nonblocking and asynchronous fashion such that overhead is minimal. We demonstrate that AutoAssist reduces the number of epochs by 40% for training a ResNet to reach the same test accuracy on an image classification data set and saves 30% training time needed for a transformer model to yield the same BLEU scores on a translation dataset.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا