Do you want to publish a course? Click here

LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks

76   0   0.0 ( 0 )
 Added by Alexander M. Rush
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVIS, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks.



rate research

Read More

Neural Sequence-to-Sequence models have proven to be accurate and robust for many sequence prediction tasks, and have become the standard approach for automatic translation of text. The models work in a five stage blackbox process that involves encoding a source sequence to a vector space and then decoding out to a new target sequence. This process is now standard, but like many deep learning methods remains quite difficult to understand or debug. In this work, we present a visual analysis tool that allows interaction with a trained sequence-to-sequence model through each stage of the translation process. The aim is to identify which patterns have been learned and to detect model errors. We demonstrate the utility of our tool through several real-world large-scale sequence-to-sequence use cases.
In this paper we study different types of Recurrent Neural Networks (RNN) for sequence labeling tasks. We propose two new variants of RNNs integrating improvements for sequence labeling, and we compare them to the more traditional Elman and Jordan RNNs. We compare all models, either traditional or new, on four distinct tasks of sequence labeling: two on Spoken Language Understanding (ATIS and MEDIA); and two of POS tagging for the French Treebank (FTB) and the Penn Treebank (PTB) corpora. The results show that our new variants of RNNs are always more effective than the others.
This paper presents NEUROSPF, a tool for the symbolic analysis of neural networks. Given a trained neural network model, the tool extracts the architecture and model parameters and translates them into a Java representation that is amenable for analysis using the Symbolic PathFinder symbolic execution tool. Notably, NEUROSPF encodes specialized peer classes for parsing the models parameters, thereby enabling efficient analysis. With NEUROSPF the user has the flexibility to specify either the inputs or the network internal parameters as symbolic, promoting the application of program analysis and testing approaches from software engineering to the field of machine learning. For instance, NEUROSPF can be used for coverage-based testing and test generation, finding adversarial examples and also constraint-based repair of neural networks, thus improving the reliability of neural networks and of the applications that use them. Video URL: https://youtu.be/seal8fG78LI
In neural image captioning systems, a recurrent neural network (RNN) is typically viewed as the primary `generation component. This view suggests that the image features should be `injected into the RNN. This is in fact the dominant view in the literature. Alternatively, the RNN can instead be viewed as only encoding the previously generated words. This view suggests that the RNN should only be used to encode linguistic features and that only the final representation should be `merged with the image features at a later stage. This paper compares these two architectures. We find that, in general, late merging outperforms injection, suggesting that RNNs are better viewed as encoders, rather than generators.
Modeling the structure of coherent texts is a key NLP problem. The task of coherently organizing a given set of sentences has been commonly used to build and evaluate models that understand such structure. We propose an end-to-end unsupervised deep learning approach based on the set-to-sequence framework to address this problem. Our model strongly outperforms prior methods in the order discrimination task and a novel task of ordering abstracts from scientific articles. Furthermore, our work shows that useful text representations can be obtained by learning to order sentences. Visualizing the learned sentence representations shows that the model captures high-level logical structure in paragraphs. Our representations perform comparably to state-of-the-art pre-training methods on sentence similarity and paraphrase detection tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا