Do you want to publish a course? Click here

Multi-turn Dialogue Reading Comprehension with Pivot Turns and Knowledge

130   0   0.0 ( 0 )
 Added by Zhuosheng Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Multi-turn dialogue reading comprehension aims to teach machines to read dialogue contexts and solve tasks such as response selection and answering questions. The major challenges involve noisy history contexts and especial prerequisites of commonsense knowledge that is unseen in the given material. Existing works mainly focus on context and response matching approaches. This work thus makes the first attempt to tackle the above two challenges by extracting substantially important turns as pivot utterances and utilizing external knowledge to enhance the representation of context. We propose a pivot-oriented deep selection model (PoDS) on top of the Transformer-based language models for dialogue comprehension. In detail, our model first picks out the pivot utterances from the conversation history according to the semantic matching with the candidate response or question, if any. Besides, knowledge items related to the dialogue context are extracted from a knowledge graph as external knowledge. Then, the pivot utterances and the external knowledge are combined with a well-designed mechanism for refining predictions. Experimental results on four dialogue comprehension benchmark tasks show that our proposed model achieves great improvements on baselines. A series of empirical comparisons are conducted to show how our selection strategies and the extra knowledge injection influence the results.



rate research

Read More

100 - Zhuosheng Zhang , Hai Zhao 2021
Training machines to understand natural language and interact with humans is an elusive and essential task in the field of artificial intelligence. In recent years, a diversity of dialogue systems has been designed with the rapid development of deep learning researches, especially the recent pre-trained language models. Among these studies, the fundamental yet challenging part is dialogue comprehension whose role is to teach the machines to read and comprehend the dialogue context before responding. In this paper, we review the previous methods from the perspective of dialogue modeling. We summarize the characteristics and challenges of dialogue comprehension in contrast to plain-text reading comprehension. Then, we discuss three typical patterns of dialogue modeling that are widely-used in dialogue comprehension tasks such as response selection and conversation question-answering, as well as dialogue-related language modeling techniques to enhance PrLMs in dialogue scenarios. Finally, we highlight the technical advances in recent years and point out the lessons we can learn from the empirical analysis and the prospects towards a new frontier of researches.
Multi-party multi-turn dialogue comprehension brings unprecedented challenges on handling the complicated scenarios from multiple speakers and criss-crossed discourse relationship among speaker-aware utterances. Most existing methods deal with dialogue contexts as plain texts and pay insufficient attention to the crucial speaker-aware clues. In this work, we propose an enhanced speaker-aware model with masking attention and heterogeneous graph networks to comprehensively capture discourse clues from both sides of speaker property and speaker-aware relationships. With such comprehensive speaker-aware modeling, experimental results show that our speaker-aware model helps achieves state-of-the-art performance on the benchmark dataset Molweni. Case analysis shows that our model enhances the connections between utterances and their own speakers and captures the speaker-aware discourse relations, which are critical for dialogue modeling.
Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approaches use translation data by translating from a rich-source language, such as English, to low-source languages as auxiliary supervision. However, how to effectively leverage translation data and reduce the impact of noise introduced by translation remains onerous. In this paper, we tackle this challenge and enhance the cross-lingual transferring performance by a novel augmentation approach named Language Branch Machine Reading Comprehension (LBMRC). A language branch is a group of passages in one single language paired with questions in all target languages. We train multiple machine reading comprehension (MRC) models proficient in individual language based on LBMRC. Then, we devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages. Combining the LBMRC and multilingual distillation can be more robust to the data noises, therefore, improving the models cross-lingual ability. Meanwhile, the produced single multilingual model is applicable to all target languages, which saves the cost of training, inference, and maintenance for multiple models. Extensive experiments on two CLMRC benchmarks clearly show the effectiveness of our proposed method.
104 - Kai Sun , Dian Yu , Jianshu Chen 2020
In this paper, we aim to extract commonsense knowledge to improve machine reading comprehension. We propose to represent relations implicitly by situating structured knowledge in a context instead of relying on a pre-defined set of relations, and we call it contextualized knowledge. Each piece of contextualized knowledge consists of a pair of interrelated verbal and nonverbal messages extracted from a script and the scene in which they occur as context to implicitly represent the relation between the verbal and nonverbal messages, which are originally conveyed by different modalities within the script. We propose a two-stage fine-tuning strategy to use the large-scale weakly-labeled data based on a single type of contextualized knowledge and employ a teacher-student paradigm to inject multiple types of contextualized knowledge into a student machine reader. Experimental results demonstrate that our method outperforms a state-of-the-art baseline by a 4.3% improvement in accuracy on the machine reading comprehension dataset C^3, wherein most of the questions require unstated prior knowledge.
This paper presents a novel method to generate answers for non-extraction machine reading comprehension (MRC) tasks whose answers cannot be simply extracted as one span from the given passages. Using a pointer network-style extractive decoder for such type of MRC may result in unsatisfactory performance when the ground-truth answers are given by human annotators or highly re-paraphrased from parts of the passages. On the other hand, using generative decoder cannot well guarantee the resulted answers with well-formed syntax and semantics when encountering long sentences. Therefore, to alleviate the obvious drawbacks of both sides, we propose an answer making-up method from extracted multi-spans that are learned by our model as highly confident $n$-gram candidates in the given passage. That is, the returned answers are composed of discontinuous multi-spans but not just one consecutive span in the given passages anymore. The proposed method is simple but effective: empirical experiments on MS MARCO show that the proposed method has a better performance on accurately generating long answers, and substantially outperforms two competitive typical one-span and Seq2Seq baseline decoders.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا