No Arabic abstract
The ability of a body-centered cubic metal to deform plastically is limited by the thermally activated glide motion of screw dislocations, which are line defects with a mobility exhibiting complex dependence on temperature, stress, and dislocation segment length. We derive an analytical expression for the velocity of dislocation glide, based on a statistical mechanics argument, and identify an apparent phase transition marked by a critical temperature above which the activation energy for glide effectively halves, changing from the formation energy of a double kink to that of a single kink. The analysis is in quantitative agreement with direct kinetic Monte Carlo simulations.
Carbon nanofibers (NFs) have been envisioned with broad promising applications, such as nanoscale actuators and energy storage medium. This work reports for the first-time super-elastic tensile characteristics of NFs constructed from a screw dislocation of carbon nanocones (NF-S). The NF-S exhibits three distinct elastic deformation stages under tensile, including an initial homogeneous deformation, delamination, and further stretch of covalent bonds. The delamination process endows the NF-S extraordinary tensile deformation capability, which is not accessible from its counterpart with a normal cup-stacked geometry. The failure of NF-S is governed by the inner edges of the nanocone due to the strain concentration, leading to a common failure force for NF-S with varying geometrical parameters. Strikingly, the delamination process is dominated by the inner radius and the apex angle of the nanocone. For a fixed apex angle, the yielding strain increases remarkably when the inner radius increases, which can exceed 1000%. It is also found that the screw dislocation allows the nanocones flattening and sliding during compression. This study provides a comprehensive understanding on the mechanical properties of NFs as constructed from carbon nanocones, which opens new avenues for novel applications, such as nanoscale actuators.
Using first-principle simulations for the probability density of finding a 3He atom in the vicinity of the screw dislocation in solid 4He, we determine the binding energy to the dislocation nucleus E_B = 0.8 pm 0.1 K and the density of localized states at larger distances. The specific heat due to 3He features a peak similar to the one observed in recent experiments, and our model can also account for the observed increase in shear modulus at low temperature. We further discuss the role of 3He in the picture of superfluid defects.
Two-dimensional (2D) layered tungsten diselenides (WSe2) material has recently drawn a lot of attention due to its unique optoelectronic properties and ambipolar transport behavior. However, direct chemical vapor deposition (CVD) synthesis of 2D WSe2 is not as straightforward as other 2D materials due to the low reactivity between reactants in WSe2 synthesis. In addition, the growth mechanism of WSe2 in such CVD process remains unclear. Here we report the observation of a screw-dislocation-driven (SDD) spiral growth of 2D WSe2 flakes and pyramid-like structures using a sulfur-assisted CVD method. Few-layer and pyramid-like WSe2 flakes instead of monolayer were synthesized by introducing a small amount of sulfur as a reducer to help the selenization of WO3, which is the precursor of tungsten. Clear observations of steps, helical fringes, and herring-bone contours under atomic force microscope characterization reveal the existence of screw dislocations in the as-grown WSe2. The generation and propagation mechanisms of screw dislocations during the growth of WSe2 were discussed. Back-gated field-effect transistors were made on these 2D WSe2 materials, which show on/off current ratios of 106 and mobility up to 44 cm2/Vs.
Interactions among dislocations and solute atoms are the basis of several important processes in metals plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature plastic flow is controlled by screw dislocation glide, which is known to take place by the nucleation and sideward relaxation of kink pairs across two consecutive emph{Peierls} valleys. In alloys, dislocations and solutes affect each others kinetics via long-range stress field coupling and short-range inelastic interactions. It is known that in certain substitutional bcc alloys a transition from solute softening to solute hardening is observed at a critical concentration. In this paper, we develop a kinetic Monte Carlo model of screw dislocation glide and solute diffusion in substitutional W-Re alloys. We find that dislocation kinetics is governed by two competing mechanisms. At low solute concentrations, nucleation is enhanced by the softening of the Peierls stress, which overcomes the elastic repulsion of Re atoms on kinks. This trend is reversed at higher concentrations, resulting in a minimum in the flow stress that is concentration and temperature dependent. This minimum marks the transition from solute softening to hardening, which is found to be in reasonable agreement with experiments.
In linearised continuum elasticity, the elastic strain due to a straight dislocation line decays as $O(r^{-1})$, where $r$ denotes the distance to the defect core. It is shown in Ehrlacher, Ortner, Shapeev (2016) that the core correction due to nonlinear and discrete (atomistic) effects decays like $O(r^{-2})$. In the present work, we focus on screw dislocations under pure anti-plane shear kinematics. In this setting we demonstrate that an improved decay $O(r^{-p})$, $p > 2$, of the core correction is obtained when crystalline symmetries are fully exploited and possibly a simple and explicit correction of the continuum far-field prediction is made. This result is interesting in its own right as it demonstrates that, in some cases, continuum elasticity gives a much better prediction of the elastic field surrounding a dislocation than expected, and moreover has practical implications for atomistic simulation of dislocations cores, which we discuss as well.