Do you want to publish a course? Click here

Binding of a 3He impurity to a screw dislocation in solid 4He

423   0   0.0 ( 0 )
 Added by Philippe Corboz
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using first-principle simulations for the probability density of finding a 3He atom in the vicinity of the screw dislocation in solid 4He, we determine the binding energy to the dislocation nucleus E_B = 0.8 pm 0.1 K and the density of localized states at larger distances. The specific heat due to 3He features a peak similar to the one observed in recent experiments, and our model can also account for the observed increase in shear modulus at low temperature. We further discuss the role of 3He in the picture of superfluid defects.



rate research

Read More

103 - A. Maciolek , 2003
A lattice model of 3He - 4He mixtures which takes into account the continuous rotational symmetry O(2) of the superfluid degrees of freedom of 4He is studied in the molecular-field approximation and by Monte Carlo simulations in three dimensions. In contrast to its two-dimensional version, for reasonable values of the interaction parameters the resulting phase diagram resembles that observed experimentally for 3He - 4He mixtures, for which phase separation occurs as a consequence of the superfluid transition. The corresponding continuum Ginzburg-Landau model with two order parameters describing 3He- 4He mixtures near tricriticality is derived from the considered lattice model. All coupling constants appearing in the continuum model are explicitly expressed in terms of the mean concentration of 4He, the temperature, and the microscopic interaction parameters characterizing the lattice system.
164 - S. S. Kim , C. Huan , L. Yin 2012
We report measurements of the nuclear spin-lattice and spin-spin relaxation times of very dilute 3He in solid 4He in the temperature range 0.01 leq T leq 0.5 K for densities where anomalies have been observed in torsional oscillator and shear modulus measurements. We compare the results with the values of the relaxation times reported by other observers for higher concentrations and the theory of Landesman that takes into account the elastic properties of the 4He lattice. A sharp increase in the magnitude of the nuclear spin-lattice relaxation times compared to the the classical Landesman theory is observed close to the temperatures where the torsional and shear modulus anomalies are observed. The NMR results suggest that the tunneling of 3He impurities in the atomic-scale elastic distortion is affected by the same processes that give rise to the macroscopic elastic dissipation anomalies.
The ability of a body-centered cubic metal to deform plastically is limited by the thermally activated glide motion of screw dislocations, which are line defects with a mobility exhibiting complex dependence on temperature, stress, and dislocation segment length. We derive an analytical expression for the velocity of dislocation glide, based on a statistical mechanics argument, and identify an apparent phase transition marked by a critical temperature above which the activation energy for glide effectively halves, changing from the formation energy of a double kink to that of a single kink. The analysis is in quantitative agreement with direct kinetic Monte Carlo simulations.
We propose a characterisation of the effects of bistable coherent impurities in solid state qubits. We introduce an effective impurity description in terms of a tunable spin-boson environment and solve the dynamics for the qubit coherences. The dominant rate characterizing the asymptotic time limit is identified and signatures of non-Gaussian behavior of the quantum impurity at intermediate times are pointed out. An alternative perspective considering the qubit as a measurement device for the spin-boson impurity is proposed.
The changes that vacancies produce in the properties of hcp solid 4He are studied by means of quantum Monte Carlo methods. Our results show that the introduction of vacancies produces significant changes in the behavior of solid 4He, even when the vacancy concentration is very small. We show that there is an onset temperature where the properties of incommensurate 4He change significantly. Below this temperature, we observe the emergence of off-diagonal long range order and a complete spatial delocalization of the vacancies. This temperature is quite close to the temperature where non-classical rotational inertia has been experimentally observed. Finally, we report results on the influence of vacancies in the elastic properties of hcp 4He at zero temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا