Do you want to publish a course? Click here

A novel super-elastic carbon nanofiber with cup-stacked carbon nanocones and a screw dislocation

104   0   0.0 ( 0 )
 Added by Haifei Zhan HF
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Carbon nanofibers (NFs) have been envisioned with broad promising applications, such as nanoscale actuators and energy storage medium. This work reports for the first-time super-elastic tensile characteristics of NFs constructed from a screw dislocation of carbon nanocones (NF-S). The NF-S exhibits three distinct elastic deformation stages under tensile, including an initial homogeneous deformation, delamination, and further stretch of covalent bonds. The delamination process endows the NF-S extraordinary tensile deformation capability, which is not accessible from its counterpart with a normal cup-stacked geometry. The failure of NF-S is governed by the inner edges of the nanocone due to the strain concentration, leading to a common failure force for NF-S with varying geometrical parameters. Strikingly, the delamination process is dominated by the inner radius and the apex angle of the nanocone. For a fixed apex angle, the yielding strain increases remarkably when the inner radius increases, which can exceed 1000%. It is also found that the screw dislocation allows the nanocones flattening and sliding during compression. This study provides a comprehensive understanding on the mechanical properties of NFs as constructed from carbon nanocones, which opens new avenues for novel applications, such as nanoscale actuators.



rate research

Read More

The use of oxide glasses is pervasive throughout everyday amenities and commodities. Such glasses are typically electrical insulators, and endowing them with electrical conductivity without changing their salutary mechanical properties, weight, or thermoformability enables new applications in multifunctional utensils, smart windows, and automotive parts. Previous strategies to impart electrical conductivity include modifying the glass composition or forming a solid-in-solid composite of the glass and a conductive phase. Here we demonstrate using the latter strategy the highest reported room-temperature electrical conductivity in a bulk oxide glass 1800 S/m corresponding to the theoretical limit for the loading fraction of the conductive phase. This is achieved through glass-sintering of a mixture of carbon nanofibers and oxide flint F2 or soda lime glasses, with the bulk conductivity further enhanced by a polyethylene-block-poly(ethylene glycol) additive. A theoretical model provides predictions that are in excellent agreement with the dependence of conductivity of these composites on the carbon-loading fraction. Moreover, nanoscale electrical characterization of the composite samples provides evidence for the existence of a connected network of carbon nanofibers throughout the bulk. Our results establish a potentially low-cost approach for producing large volumes of highly conductive glass independently of the glass composition.
The ability of a body-centered cubic metal to deform plastically is limited by the thermally activated glide motion of screw dislocations, which are line defects with a mobility exhibiting complex dependence on temperature, stress, and dislocation segment length. We derive an analytical expression for the velocity of dislocation glide, based on a statistical mechanics argument, and identify an apparent phase transition marked by a critical temperature above which the activation energy for glide effectively halves, changing from the formation energy of a double kink to that of a single kink. The analysis is in quantitative agreement with direct kinetic Monte Carlo simulations.
107 - Jing-Yang You , Bo Gu , 2019
In recent experiments, superconductivity and correlated insulating states were observed in twisted bilayer graphene (TBG) with small magic angles, which highlights the importance of the flat bands near Fermi energy. However, the moire pattern of TBG consists of more than ten thousand carbon atoms that is not easy to handle with conventional methods. By density functional theory calculations, we obtain a flat band at E$_F$ in a novel carbon monolayer coined as cyclicgraphdiyne with the unit cell of eighteen atoms. By doping holes into cyclicgraphdiyne to make the flat band partially occupied, we find that cyclicgraphdiyne with 1/8, 1/4, 3/8 and 1/2 hole doping concentration shows ferromagnetism (half-metal) while the case without doping is nonmagnetic, indicating a hole-induced nonmagnetic-ferromagnetic transition. The calculated conductivity of cyclicgraphdiyne with 1/8, 1/4 and 3/8 hole doping concentration is much higher than that without doping or with 1/2 hole doping. These results make cyclicgraphdiyne really attractive. By studying several carbon monolayers, we find that a perfect flat band may occur in the lattices with both separated or corner-connected triangular motifs with only including nearest-neighboring hopping of electrons, and the dispersion of flat band can be tuned by next-nearest-neighboring hopping. Our results shed insightful light on the formation of flat band in TBG. The present study also poses an alternative way to manipulate magnetism through doping flat band in carbon materials.
A theoretical study of the electronic properties of nanodisks and nanocones is presented within the framework of a tight-binding scheme. The electronic densities of states and absorption coefficients are calculated for such structures with different sizes and topologies. A discrete position approximation is used to describe the electronic states taking into account the effect of the overlap integral to first order. For small finite systems, both total and local densities of states depend sensitively on the number of atoms and characteristic geometry of the structures. Results for the local densities of charge reveal a finite charge distribution around some atoms at the apices and borders of the cone structures. For structures with more than 5000 atoms, the contribution to the total density of states near the Fermi level essentially comes from states localized at the edges. For other energies the average density of states exhibits similar features to the case of a graphene lattice. Results for the absorption spectra of nanocones show a peculiar dependence on the photon polarization in the infrared range for all investigated structures.
This review covers recent achievements in the studies of quantum properties of the novel carbon materials (fullerite C60 and bundles of single-walled nanotubes (SWNT)) saturated with such light-mass species as helium isotopes, the homonuclear molecular hydrogens, and neon. It is shown that even some heavy dopants demon-strate kinetic phenomena, in which coherent effects play an essential role. Two theoretical concepts are surveyed which have been suggested for the explanation of the anomalous phenomena in saturation kinetics and linear thermal expansion of doped C60. Most unusual effects have been also observed in the low-temperature radial ex-pansion of bundles of single-walled carbon nanotubes saturated with the helium isotopes. First, it was shown that low-temperature radial expansion of pure SWNT is negative, i.e., a nanotube shrinks with warming. Second, sa-turation of SWNT bundles with the helium isotopes entails a huge increase of the negative expansion effect, when the dopant is He. So far, no detailed physical picture has been put forward. It is worth mentioning that the dynamics of a single helium atom on an isolated nanotube corresponds to that of a tight-bound quasiparticle with a band width of about 10 K.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا