Do you want to publish a course? Click here

3D photo-responsive optical devices manufactured by advanced printing technologies

63   0   0.0 ( 0 )
 Added by Andrea Camposeo
 Publication date 2019
  fields Physics
and research's language is English
 Authors A. Szukalski




Ask ChatGPT about the research

Photonic components responsive to external optical stimuli are attracting increasing interest, because their properties can be manipulated by light with fast switching times, high spatial definition, and potentially remote control. These aspects can be further enhanced by novel architectures, which have been recently enabled by the availability of 3D printing and additive manufacturing technologies. However, current methods are still limited to passive optical materials, whereas photo-responsive materials would require the development of 3D printing techniques able to preserve the optical properties of photoactive compounds and to achieve high spatial resolution to precisely control the propagation of light. Also, optical losses in 3D printed materials are an issue to be addressed. Here we report on advanced additive manufacturing technologies, specifically designed to embed photo-responsive compounds in 3D optical devices. The properties of 3D printed devices can be controlled by external UV and visible light beams, with characteristic switching times in the range 1-10 s.



rate research

Read More

129 - L. Persano 2018
3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.
3D printing, also called additive manufacturing, offers a new vision for optical fabrication in term of achievable optical quality and reduction of weight and cost. In this paper we describe two different ways to use this technique in the fabrication process. The first method makes use of 3D printing in the fabrication of warping harnesses for stress polishing, and we apply that to the fabrication of the WFIRST coronagraph off axis parabolas. The second method considers a proof of concept for 3D printing of lightweight X-Ray mirrors, targeting the next generation of X-rays telescopes. Stress polishing is well suited for the fabrication of the high quality off axis parabolas required by the coronagraph to image exoplanets.. Here we describe a new design of warping harness which can generate astigmatism and coma with only one actuator. The idea is to incorporate 3D printing in the manufacturing of the warping harness. The method depicted in this paper demonstrates that we reach the tight precision required at the mirrors surface. Moreover the error introduced by the warping harness fabricated by 3D printing does not impact the final error budget. Concerning the proof of concept project, we investigate 3D printing towards lightweight X-ray mirrors. We present the surface metrology of test samples fabricated by stereo lithography (SLA) and Selective Laser Sintering (SLS) with different materials. The lightweighting of the samples is composed of a series of arches. By complementing 3D printing with finite element analysis topology optimization we can simulate a specific optimum shape for the given input parameters and external boundary conditions. The next set of prototypes is designed taking to account the calculation of topology optimisation.
Two-photon photopolymerization delivers prints without support structures and minimizes layering artifacts in a broad range of materials. This volumetric printing approach scans a focused light source throughout the entire volume of a resin vat and takes advantage of the quadratic power dependence of two photon absorption to produce photopolymerization exclusively at the focal point. While this approach has advantages, the widespread adoption of two photon photopolymerization is hindered by the need for expensive ultrafast lasers and extremely slow print speeds. Here we present an analogous quadratic process, triplet-triplet-annihilation-driven 3D printing, that enables volumetric printing at a focal point driven by <4 milliwatt-power continuous wave excitation. To induce photopolymerization deep within a vat, the key advance is the nanoencapsulation of photon upconversion solution within a silica shell decorated with solubilizing polymer ligands. This scalable self-assembly approach allows for scatter-free nanocapsule dispersal in a variety of organic media without leaking the capsule contents. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities multiple orders of magnitude lower than power densities required for two-photon-based 3D printing. The application of upconversion nanocapsules to volumetric 3D printing provides access to the benefits of volumetric printing without the current cost, power, and speed drawbacks. The materials demonstrated here open opportunities for other triplet fusion upconversion-controlled applications.
We report an optical homogeneous linewidth of 580 $pm$ 20 Hz of Er$^{3+}$:Y$_2$O$_3$ ceramics at millikelvin temperatures, narrowest so far in rare-earth doped ceramics. We show slow spectral diffusion of $sim$2 kHz over a millisecond time scale. Temperature, field dependence of optical coherence and spectral diffusions reveal the remaining dephasing mechanism as elastic two-level systems in polycrystalline grain boundaries and superhyperfine interactions of Er$^{3+}$ with nuclear spins. In addition, we perform spectral holeburning and measure up to 5 s hole lifetimes. These spectroscopic results put Er$^{3+}$:Y$_2$O$_3$ ceramics as a promising candidate for telecommunication quantum memories and light-matter interfaces.
Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an approach to conveniently fabricate such thin membranes with up to about one millimeter in size. We use commercially available diamond plates (thickness 50 $mu$m) in an inductively coupled reactive ion etching process which is based on argon, oxygen and SF$_6$. We thus avoid using toxic, corrosive feed gases and add an alternative to previously presented recipes involving chlorine-based etching steps. Our membranes are smooth (RMS roughness <1 nm) and show moderate thickness variation (central part: <1 $mu$m over $approx ,$200x200 $mu$m$^2$). Due to an improved etch mask geometry, our membranes stay reliably attached to the diamond plate in our chlorine-based as well as SF$_6$-based processes. Our results thus open the route towards higher reliability in diamond device fabrication and up-scaling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا