Do you want to publish a course? Click here

3D printing for astronomical mirrors

76   0   0.0 ( 0 )
 Added by M\\'elanie Roulet
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

3D printing, also called additive manufacturing, offers a new vision for optical fabrication in term of achievable optical quality and reduction of weight and cost. In this paper we describe two different ways to use this technique in the fabrication process. The first method makes use of 3D printing in the fabrication of warping harnesses for stress polishing, and we apply that to the fabrication of the WFIRST coronagraph off axis parabolas. The second method considers a proof of concept for 3D printing of lightweight X-Ray mirrors, targeting the next generation of X-rays telescopes. Stress polishing is well suited for the fabrication of the high quality off axis parabolas required by the coronagraph to image exoplanets.. Here we describe a new design of warping harness which can generate astigmatism and coma with only one actuator. The idea is to incorporate 3D printing in the manufacturing of the warping harness. The method depicted in this paper demonstrates that we reach the tight precision required at the mirrors surface. Moreover the error introduced by the warping harness fabricated by 3D printing does not impact the final error budget. Concerning the proof of concept project, we investigate 3D printing towards lightweight X-ray mirrors. We present the surface metrology of test samples fabricated by stereo lithography (SLA) and Selective Laser Sintering (SLS) with different materials. The lightweighting of the samples is composed of a series of arches. By complementing 3D printing with finite element analysis topology optimization we can simulate a specific optimum shape for the given input parameters and external boundary conditions. The next set of prototypes is designed taking to account the calculation of topology optimisation.



rate research

Read More

In this paper we are exploring the possibilities of 3D printing in the fabrication of mirrors for astronomy. Taking the advantages of 3D printing to solve the existing problems caused by traditional manufacturing, two proof-of-concept mirror fabrication strategies are investigated in this paper. The First concept is a deformable mirror with embedded actuator supports system to minimise errors caused by the bonding interfaces during mirror assembly. The second concept is the adaption of the Stress Mirror Polishing (SMP) technique to a variety of mirror shapes by implemented a printed thickness distribution on the back side of the mirror. Design investigations and prototypes plans are presented for both studies.
For future space infrared astronomical coronagraphy, we perform experimental studies on the application of aluminum mirrors to a coronagraph. Cooled reflective optics is required for broad-band mid-infrared observations in space, while high-precision optics is required for coronagraphy. For the coronagraph instrument originally proposed for the next-generation infrared astronomical satellite project SPICA (SCI: SPICA Coronagraph Instrument), we fabricated and evaluated the optics consisting of high-precision aluminum off-axis mirrors with diamond-turned surfaces, and conducted a coronagraphic demonstration experiment using the optics with a coronagraph mask. We first measured the wave front errors (WFEs) of the aluminum mirrors with a He-Ne Fizeau interferometer to confirm that the power spectral densities of the WFEs satisfy the SCI requirements. Then we integrated the mirrors into an optical system and evaluated the overall performance of the system. As a result, we estimate the total WFE of the optics to be 33 nm (rms), each mirror contributing 10-20 nm (rms) for the central 14 mm area of the optics, and obtain a contrast of 10^(-5.4) as a coronagraph in the visible light. At a wavelength of 5 um, the coronagraphic system is expected to achieve a contrast of ~10^(-7) based on our model calculation with the measured optical performance. Thus our experiment demonstrates that aluminum mirror optics is applicable to a highly WFE-sensitive instrument such as a coronagraph in space.
131 - Stefano Minardi 2011
Regular two-dimensional lattices of evanescently coupled waveguides may provide in the near future photonic components capable of combining interferometrically and simultaneously a large number of telescopes, thus easing the imaging capabilities of optical interferometers. In this paper, the theoretical modeling of the so-called Discrete Beam Combiners (DBC) is described and compared to the conventional model used for photonic beam combiners for astronomical interferometry. The performance of DBCs as compared to an ideal ABCD beam combiner is discussed and applications to astronomical instrumentation analyzed.
75 - Thomas I. Madura 2016
3-D printing moves beyond interactive 3-D graphics and provides an excellent tool for both visual and tactile learners, since 3-D printing can now easily communicate complex geometries and full color information. Some limitations of interactive 3-D graphics are also alleviated by 3-D printable models, including issues of limited software support, portability, accessibility, and sustainability. We describe the motivations, methods, and results of our work on using 3-D printing (1) to visualize and understand the Eta Car Homunculus nebula and central binary system and (2) for astronomy outreach and education, specifically, with visually impaired students. One new result we present is the ability to 3-D print full-color models of Eta Cars colliding stellar winds. We also demonstrate how 3-D printing has helped us communicate our improved understanding of the detailed structure of Eta Cars Homunculus nebula and central binary colliding stellar winds, and their links to each other. Attached to this article are full-color 3-D printable files of both a red-blue Homunculus model and the Eta Car colliding stellar winds at orbital phase 1.045. 3-D printing could prove to be vital to how astronomers reach out and share their work with each other, the public, and new audiences.
Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا