No Arabic abstract
In this paper, we propose a simple yet effective method for multiple music source separation using convolutional neural networks. Stacked hourglass network, which was originally designed for human pose estimation in natural images, is applied to a music source separation task. The network learns features from a spectrogram image across multiple scales and generates masks for each music source. The estimated mask is refined as it passes over stacked hourglass modules. The proposed framework is able to separate multiple music sources using a single network. Experimental results on MIR-1K and DSD100 datasets validate that the proposed method achieves competitive results comparable to the state-of-the-art methods in multiple music source separation and singing voice separation tasks.
In recent years, music source separation has been one of the most intensively studied research areas in music information retrieval. Improvements in deep learning lead to a big progress in music source separation performance. However, most of the previous studies are restricted to separating a few limited number of sources, such as vocals, drums, bass, and other. In this study, we propose a network for audio query-based music source separation that can explicitly encode the source information from a query signal regardless of the number and/or kind of target signals. The proposed method consists of a Query-net and a Separator: given a query and a mixture, the Query-net encodes the query into the latent space, and the Separator estimates masks conditioned by the latent vector, which is then applied to the mixture for separation. The Separator can also generate masks using the latent vector from the training samples, allowing separation in the absence of a query. We evaluate our method on the MUSDB18 dataset, and experimental results show that the proposed method can separate multiple sources with a single network. In addition, through further investigation of the latent space we demonstrate that our method can generate continuous outputs via latent vector interpolation.
Deep neural network based methods have been successfully applied to music source separation. They typically learn a mapping from a mixture spectrogram to a set of source spectrograms, all with magnitudes only. This approach has several limitations: 1) its incorrect phase reconstruction degrades the performance, 2) it limits the magnitude of masks between 0 and 1 while we observe that 22% of time-frequency bins have ideal ratio mask values of over~1 in a popular dataset, MUSDB18, 3) its potential on very deep architectures is under-explored. Our proposed system is designed to overcome these. First, we propose to estimate phases by estimating complex ideal ratio masks (cIRMs) where we decouple the estimation of cIRMs into magnitude and phase estimations. Second, we extend the separation method to effectively allow the magnitude of the mask to be larger than 1. Finally, we propose a residual UNet architecture with up to 143 layers. Our proposed system achieves a state-of-the-art MSS result on the MUSDB18 dataset, especially, a SDR of 8.98~dB on vocals, outperforming the previous best performance of 7.24~dB. The source code is available at: https://github.com/bytedance/music_source_separation
Music source separation with deep neural networks typically relies only on amplitude features. In this paper we show that additional phase features can improve the separation performance. Using the theoretical relationship between STFT phase and amplitude, we conjecture that derivatives of the phase are a good feature representation opposed to the raw phase. We verify this conjecture experimentally and propose a new DNN architecture which combines amplitude and phase. This joint approach achieves a better signal-to distortion ratio on the DSD100 dataset for all instruments compared to a network that uses only amplitude features. Especially, the bass instrument benefits from the phase information.
In this paper, we adapt triplet neural networks (TNNs) to a regression task, music emotion prediction. Since TNNs were initially introduced for classification, and not for regression, we propose a mechanism that allows them to provide meaningful low dimensional representations for regression tasks. We then use these new representations as the input for regression algorithms such as support vector machines and gradient boosting machines. To demonstrate the TNNs effectiveness at creating meaningful representations, we compare them to different dimensionality reduction methods on music emotion prediction, i.e., predicting valence and arousal values from musical audio signals. Our results on the DEAM dataset show that by using TNNs we achieve 90% feature dimensionality reduction with a 9% improvement in valence prediction and 4% improvement in arousal prediction with respect to our baseline models (without TNN). Our TNN method outperforms other dimensionality reduction methods such as principal component analysis (PCA) and autoencoders (AE). This shows that, in addition to providing a compact latent space representation of audio features, the proposed approach has a higher performance than the baseline models.
Independent deeply learned matrix analysis (IDLMA) is one of the state-of-the-art multichannel audio source separation methods using the source power estimation based on deep neural networks (DNNs). The DNN-based power estimation works well for sounds having timbres similar to the DNN training data. However, the sounds to which IDLMA is applied do not always have such timbres, and the timbral mismatch causes the performance degradation of IDLMA. To tackle this problem, we focus on a blind source separation counterpart of IDLMA, independent low-rank matrix analysis. It uses nonnegative matrix factorization (NMF) as the source model, which can capture source spectral components that only appear in the target mixture, using the low-rank structure of the source spectrogram as a clue. We thus extend the DNN-based source model to encompass the NMF-based source model on the basis of the product-of-expert concept, which we call the product of source models (PoSM). For the proposed PoSM-based IDLMA, we derive a computationally efficient parameter estimation algorithm based on an optimization principle called the majorization-minimization algorithm. Experimental evaluations show the effectiveness of the proposed method.