No Arabic abstract
Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.
Stapps counterfactual argument for quantum nonlocality based upon a Hardy entangled state is shown to be flawed. While he has correctly analyzed a particular framework using the method of consistent histories, there are alternative frameworks which do not support his argument. The framework dependence of quantum counterfactual arguments, with analogs in classical counterfactuals, vitiates the claim that nonlocal (superluminal) influences exist in the quantum world. Instead it shows that counterfactual arguments are of limited use for analyzing these questions.
Non-locality stands nowadays not only as one of the cornerstones of quantum theory, but also plays a crucial role in quantum information processing. Several experimental investigations of nonlocality have been carried out over the years. In spite of their fundamental relevance, however, all previous experiments do not consider a crucial ingredient that is ubiquitous in quantum networks: the fact that correlations between distant parties are mediated by several, typically independent, sources of quantum states. Here, using a photonic setup we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two independent sources. This scenario allows for the emergence of a new kind of non-local correlations that we experimentally witness by violating a novel Bell inequality. Our results provide the first experimental proof-of-principle of generalizations of Bells theorem for networks, a topic that has attracted growing attention and promises a novel route for quantum communication protocols.
We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.
Non-contextuality (NC) and Bell inequalities can be expressed as bounds $Omega$ for positive linear combinations $S$ of probabilities of events, $S leq Omega$. Exclusive events in $S$ can be represented as adjacent vertices of a graph called the exclusivity graph of $S$. In the case that events correspond to the outcomes of quantum projective measurements, quantum probabilities are intimately related to the Grotschel-Lovasz-Schrijver theta body of the exclusivity graph. Then, one can easily compute an upper bound to the maximum quantum violation of any NC or Bell inequality by optimizing $S$ over the theta body and calculating the Lovasz number of the corresponding exclusivity graph. In some cases, this upper bound is tight and gives the exact maximum quantum violation. However, in general, this is not the case. The reason is that the exclusivity graph does not distinguish among the different ways exclusivity can occur in Bell-inequality (and similar) scenarios. An interesting question is whether there is a graph-theoretical concept which accounts for this problem. Here we show that, for any given $N$-partite Bell inequality, an edge-coloured multigraph composed of $N$ single-colour graphs can be used to encode the relationships of exclusivity between each partys parts of the events. Then, the maximum quantum violation of the Bell inequality is exactly given by a refinement of the Lovasz number that applies to these edge-coloured multigraphs. We show how to calculate upper bounds for this number using a hierarchy of semi-definite programs and calculate upper bounds for $I_3$, $I_{3322}$ and the three bipartite Bell inequalities whose exclusivity graph is a pentagon. The multigraph-theoretical approach introduced here may remove some obstacles in the program of explaining quantum correlations from first principles.
We prove an upper bound on the diffusivity of a general local and translation invariant quantum Markovian spin system: $D leq D_0 + left(alpha , v_text{LR} tau + beta , xi right) v_text{C}$. Here $v_text{LR}$ is the Lieb-Robinson velocity, $v_text{C}$ is a velocity defined by the current operator, $tau$ is the decoherence time, $xi$ is the range of interactions, $D_0$ is a microscopically determined diffusivity and $alpha$ and $beta$ are precisely defined dimensionless coefficients. The bound constrains quantum transport by quantities that can either be obtained from the microscopic interactions ($D_0, v_text{LR}, v_text{C},xi$) or else determined from independent local non-transport measurements ($tau,alpha,beta$). We illustrate the general result with the case of a spin half XXZ chain with on-site dephasing. Our result generalizes the Lieb-Robinson bound to constrain the sub-ballistic diffusion of conserved densities in a dissipative setting.