No Arabic abstract
Stapps counterfactual argument for quantum nonlocality based upon a Hardy entangled state is shown to be flawed. While he has correctly analyzed a particular framework using the method of consistent histories, there are alternative frameworks which do not support his argument. The framework dependence of quantum counterfactual arguments, with analogs in classical counterfactuals, vitiates the claim that nonlocal (superluminal) influences exist in the quantum world. Instead it shows that counterfactual arguments are of limited use for analyzing these questions.
It is shown that the possibility of using Maxwell demon to cheating in quantum non-locality tests is prohibited by the Landauers erasure principle.
Oblivious transfer, a central functionality in modern cryptography, allows a party to send two one-bit messages to another who can choose one of them to read, remaining ignorant about the other, whereas the sender does not learn the receivers choice. Oblivious transfer the security of which is information-theoretic for both parties is known impossible to achieve from scratch. - The joint behavior of certain bi-partite quantum states is non-local, i.e., cannot be explained by shared classical information. In order to better understand such behavior, which is classically explainable only by communication, but does not allow for it, Popescu and Rohrlich have described a non-locality machine: Two parties both input a bit, and both get a random output bit the XOR of which is the AND of the input bits. - We show a close connection, in a cryptographic sense, between OT and the PR primitive. More specifically, unconditional OT can be achieved from a single realization of PR, and vice versa. Our reductions, which are single-copy, information-theoretic, and perfect, also lead to a simple and optimal protocol allowing for inverting the direction of OT.
Recently, a series of different measures quantifying memory effects in the quantum dynamics of open systems has been proposed. Here, we derive a mathematical representation for the non-Markovianity measure based on the exchange of information between the open system and its environment which substantially simplifies its numerical and experimental determination, and fully reveals the locality and universality of non-Markovianity in the quantum state space. We further illustrate the application of this representation by means of an all-optical experiment which allows the measurement of the degree of memory effects in a photonic quantum process with high accuracy.
Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.
We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.