No Arabic abstract
Non-contextuality (NC) and Bell inequalities can be expressed as bounds $Omega$ for positive linear combinations $S$ of probabilities of events, $S leq Omega$. Exclusive events in $S$ can be represented as adjacent vertices of a graph called the exclusivity graph of $S$. In the case that events correspond to the outcomes of quantum projective measurements, quantum probabilities are intimately related to the Grotschel-Lovasz-Schrijver theta body of the exclusivity graph. Then, one can easily compute an upper bound to the maximum quantum violation of any NC or Bell inequality by optimizing $S$ over the theta body and calculating the Lovasz number of the corresponding exclusivity graph. In some cases, this upper bound is tight and gives the exact maximum quantum violation. However, in general, this is not the case. The reason is that the exclusivity graph does not distinguish among the different ways exclusivity can occur in Bell-inequality (and similar) scenarios. An interesting question is whether there is a graph-theoretical concept which accounts for this problem. Here we show that, for any given $N$-partite Bell inequality, an edge-coloured multigraph composed of $N$ single-colour graphs can be used to encode the relationships of exclusivity between each partys parts of the events. Then, the maximum quantum violation of the Bell inequality is exactly given by a refinement of the Lovasz number that applies to these edge-coloured multigraphs. We show how to calculate upper bounds for this number using a hierarchy of semi-definite programs and calculate upper bounds for $I_3$, $I_{3322}$ and the three bipartite Bell inequalities whose exclusivity graph is a pentagon. The multigraph-theoretical approach introduced here may remove some obstacles in the program of explaining quantum correlations from first principles.
The structure of Bell-type inequalities detecting genuine multipartite non-locality, and hence detecting genuine multipartite entanglement, is investigated. We first present a simple and intuitive approach to Svetlichnys original inequality, which provides a clear understanding of its structure and of its violation in quantum mechanics. Based on this approach, we then derive a family of Bell-type inequalities for detecting genuine multipartite non-locality in scenarios involving an arbitrary number of parties and systems of arbitrary dimension. Finally we discuss the thightness and quantum mechanical violations of these inequalities.
It is shown that the possibility of using Maxwell demon to cheating in quantum non-locality tests is prohibited by the Landauers erasure principle.
Oblivious transfer, a central functionality in modern cryptography, allows a party to send two one-bit messages to another who can choose one of them to read, remaining ignorant about the other, whereas the sender does not learn the receivers choice. Oblivious transfer the security of which is information-theoretic for both parties is known impossible to achieve from scratch. - The joint behavior of certain bi-partite quantum states is non-local, i.e., cannot be explained by shared classical information. In order to better understand such behavior, which is classically explainable only by communication, but does not allow for it, Popescu and Rohrlich have described a non-locality machine: Two parties both input a bit, and both get a random output bit the XOR of which is the AND of the input bits. - We show a close connection, in a cryptographic sense, between OT and the PR primitive. More specifically, unconditional OT can be achieved from a single realization of PR, and vice versa. Our reductions, which are single-copy, information-theoretic, and perfect, also lead to a simple and optimal protocol allowing for inverting the direction of OT.
Quantum pseudo-telepathy is an intriguing phenomenon which results from the application of quantum information theory to communication complexity. To demonstrate this phenomenon researchers in the field of quantum communication complexity devised a number of quantum non-locality games. The setting of these games is as follows: the players are separated so that no communication between them is possible and are given a certain computational task. When the players have access to a quantum resource called entanglement, they can accomplish the task: something that is impossible in a classical setting. To an observer who is unfamiliar with the laws of quantum mechanics it seems that the players employ some sort of telepathy; that is, they somehow exchange information without sharing a communication channel. This paper provides a formal framework for specifying, implementing, and analysing quantum non-locality games.
Non-locality stands nowadays not only as one of the cornerstones of quantum theory, but also plays a crucial role in quantum information processing. Several experimental investigations of nonlocality have been carried out over the years. In spite of their fundamental relevance, however, all previous experiments do not consider a crucial ingredient that is ubiquitous in quantum networks: the fact that correlations between distant parties are mediated by several, typically independent, sources of quantum states. Here, using a photonic setup we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two independent sources. This scenario allows for the emergence of a new kind of non-local correlations that we experimentally witness by violating a novel Bell inequality. Our results provide the first experimental proof-of-principle of generalizations of Bells theorem for networks, a topic that has attracted growing attention and promises a novel route for quantum communication protocols.