No Arabic abstract
We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 $pm$ 0.03) eV, leading to a clock frequency shift rate of $2.7times10^{-9}/$K in fractional unit. A hyperfine population lifetime, $T_1$, and a microwave coherence lifetime, $T_2$, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.
We report on a theoretical study and experimental characterization of coherent population trapping (CPT) resonances in buffer gas-filled vapor cells with push-pull optical pumping (PPOP) on Cs D1 line. We point out that the push-pull interaction scheme is identical to the so-called lin per lin polarization scheme. Expressions of the relevant dark states, as well as of absorption, are reported. The experimental setup is based on the combination of a distributed feedback (DFB) diode laser, a pigtailed intensity Mach-Zehnder electro-optic modulator (MZ EOM) for optical sidebands generation and a Michelson-like interferometer. A microwave technique to stabilize the transfer function operating point of the MZ EOM is implemented for proper operation. A CPT resonance contrast as high as 78% is reported in a cm-scale cell for the magnetic-field insensitive clock transition. The impact of the laser intensity on the CPT clock signal key parameters (linewidth - contrast - linewidth/contrast ratio) is reported for three different cells with various dimensions and buffer gas contents. The potential of the PPOP technique for the development of high-performance atomic vapor cell clocks is discussed.
Vapor cell atomic clocks exhibit reduced frequency stability for averaging time between about one hundred and a few thousand seconds. Here we report a study on the impact of the main parameters on the mid-to-long term instability of a buffer-gas vapor cell Cs clock, based on coherent population trapping (CPT). The CPT signal is observed on the Cs D1 line transmission, using a double $Lambda$ scheme and a Ramsey interrogation technique. The effects on the clock frequency of the magnetic field, the cell temperature, and the laser intensities are reported. We show in particular that the laser intensity shift is temperature dependent. Along with the laser intensity ratio and laser polarization properties, this is one of the most important parameters.
Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization. The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple sevenlevel model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer and high precision spectroscopy applications.
We demonstrate a high-performance coherent-population-trapping (CPT) Cs vapor cell atomic clock using the push-pull optical pumping technique (PPOP) in the pulsed regime, allowing the detection of high-contrast and narrow Ramsey-CPT fringes. The impact of several experimental parameters onto the clock resonance and short-term fractional frequency stability, including the laser power, the cell temperature and the Ramsey sequence parameters, has been investigated. We observe and explain the existence of a slight dependence on laser power of the central Ramsey-CPT fringe line-width in the pulsed regime. We report also that the central fringe line-width is commonly narrower than the expected Ramsey line-width given by $1/(2T_R)$, with $T_R$ the free-evolution time, for short values of $T_R$. The clock demonstrates a short-term fractional frequency stability at the level of $2.3 times 10^{-13}~tau^{-1/2}$ up to 100 seconds averaging time, mainly limited by the laser AM noise. Comparable performances are obtained in the conventional continuous (CW) regime, if use of an additional laser power stabilization setup. The pulsed interaction allows to reduce significantly the clock frequency sensitivity to laser power variations, especially for high values of $T_R$. This pulsed CPT clock, ranking among the best microwave vapor cell atomic frequency standards, could find applications in telecommunication, instrumentation, defense or satellite-based navigation systems.
We demonstrate a vapor cell atomic clock prototype based on continuous-wave (CW) interrogation and double-modulation coherent population trapping (DM-CPT) technique. The DM-CPT technique uses a synchronous modulation of polarization and relative phase of a bi-chromatic laser beam in order to increase the number of atoms trapped in a dark state, i.e. a non-absorbing state. The narrow resonance, observed in transmission of a Cs vapor cell, is used as a narrow frequency discriminator in an atomic clock. A detailed characterization of the CPT resonance versus numerous parameters is reported. A short-term frequency stability of $3.2 times 10^{-13} tau^{-1/2}$ up to 100 s averaging time is measured. These performances are more than one order of magnitude better than industrial Rb clocks and comparable to those of best laboratory-prototype vapor cell clocks. The noise budget analysis shows that the short and mid-term frequency stability is mainly limited by the power fluctuations of the microwave used to generate the bi-chromatic laser. These preliminary results demonstrate that the DM-CPT technique is well-suited for the development of a high-performance atomic clock, with potential compact and robust setup due to its linear architecture. This clock could find future applications in industry, telecommunications, instrumentation or global navigation satellite systems.