Do you want to publish a course? Click here

Limitations of long term stability in a coherent population trapping Cs clock

130   0   0.0 ( 0 )
 Added by Emeric de Clercq
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Vapor cell atomic clocks exhibit reduced frequency stability for averaging time between about one hundred and a few thousand seconds. Here we report a study on the impact of the main parameters on the mid-to-long term instability of a buffer-gas vapor cell Cs clock, based on coherent population trapping (CPT). The CPT signal is observed on the Cs D1 line transmission, using a double $Lambda$ scheme and a Ramsey interrogation technique. The effects on the clock frequency of the magnetic field, the cell temperature, and the laser intensities are reported. We show in particular that the laser intensity shift is temperature dependent. Along with the laser intensity ratio and laser polarization properties, this is one of the most important parameters.



rate research

Read More

The Dick effect can be a limitation of the achievable frequency stability of a passive atomic frequency standard when the ancillary frequency source is only periodically sampled. Here we analyze the Dick effect for a pulsed vapor cell clock using coherent population trapping (CPT). Due to its specific interrogation process without atomic preparation nor detection outside of the Ramsey pulses, it exhibits an original shape of the sensitivity function to phase noise of the oscillator. Numerical calculations using a three-level atom model are successfully compared with measurements; an approximate formula of the sensitivity function is given as an easy-to-use tool. A comparison of our CPT clock sensitivity to phase noise with a clock of the same duty cycle using a two-level system reveals a higher sensitivity in the CPT case. The influence of a free-evolution time variation and of a detection duration lengthening on this sensitivity is studied. Finally this study permitted to choose an adapted quartz oscillator and allowed an improvement of the clock fractional frequency stability at the level of 3.2x10-13 at 1s
We demonstrate a vapor cell atomic clock prototype based on continuous-wave (CW) interrogation and double-modulation coherent population trapping (DM-CPT) technique. The DM-CPT technique uses a synchronous modulation of polarization and relative phase of a bi-chromatic laser beam in order to increase the number of atoms trapped in a dark state, i.e. a non-absorbing state. The narrow resonance, observed in transmission of a Cs vapor cell, is used as a narrow frequency discriminator in an atomic clock. A detailed characterization of the CPT resonance versus numerous parameters is reported. A short-term frequency stability of $3.2 times 10^{-13} tau^{-1/2}$ up to 100 s averaging time is measured. These performances are more than one order of magnitude better than industrial Rb clocks and comparable to those of best laboratory-prototype vapor cell clocks. The noise budget analysis shows that the short and mid-term frequency stability is mainly limited by the power fluctuations of the microwave used to generate the bi-chromatic laser. These preliminary results demonstrate that the DM-CPT technique is well-suited for the development of a high-performance atomic clock, with potential compact and robust setup due to its linear architecture. This clock could find future applications in industry, telecommunications, instrumentation or global navigation satellite systems.
We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 $pm$ 0.03) eV, leading to a clock frequency shift rate of $2.7times10^{-9}/$K in fractional unit. A hyperfine population lifetime, $T_1$, and a microwave coherence lifetime, $T_2$, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.
144 - Peter Yun , Qinglin Li , Qiang Hao 2021
The coherent population trapping (CPT) atomic clock is very promising for use in next-generation spaceborne applications owing to its compactness and high performance. In this paper, we propose and implement a CPT atomic clock based on the direct modulation of a large-modulation-bandwidth and narrow-linewidth distributed Bragg reflector laser, which replaces the usually used external bulk modulator in the high-performance CPT clock. Our method retains the high performance while significantly reducing the size. Using this highly compact bichromatic light source and simplest CPT configuration, in which a circularly polarized bichromatic laser interrogates the ^{87}Rb atom system, a CPT signal of clock transition with a narrow linewidth and high contrast is observed. We then lock the local oscillator frequency to the CPT error signal and demonstrate a short-term frequency stability of 3.6 times 10^{-13} {tau}^{-1/2} (4 s le {tau} le 200 s). We attribute it to the ultralow laser frequency and intensity noise as well as to the high-quality-factor CPT signal. This study can pave the way for the development of compact high-performance CPT clocks based on our scheme.
We report on a series of 42 measurements of the transition frequency of the 429~THz (5s$^2$)~$^1$S$_0$--(5s5p)~$^3$P$_0$ line in $^{87}$Sr taken over three years from 2017 to 2019. They have been performed at the Physikalisch-Technische Bundesanstalt (PTB) between the laboratory strontium lattice clock and the primary caesium fountain clocks CSF1 and CSF2. The length of each individual measurement run has been extended by use of a hydrogen maser as flywheel to improve the statistical uncertainty given by the Cs clocks. We determine an averaged transition frequency of $429:228:004:229:873.00(0.07)$~Hz with $1.5times10^{-16}$ fractional uncertainty, at the limit of the current realization of the unit hertz. Analysis of the data provides an improved limit on the coupling of the gravitational potential of the Sun to the proton--electron mass ratio $mu$, and confirms the limits on its temporal drift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا