Do you want to publish a course? Click here

Least Squares Fitting of Low-Level Gamma-ray Spectra with B-Spline Basis Functions

288   0   0.0 ( 0 )
 Added by LiangGang Liu
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, new methods for smoothing gamma-ray spectra measured by NaI detector are derived. Least squares fitting method with B-spline basis functions is used to reduce the influence of statistical fluctuations. The derived procedures are simple and automatic. The results show that this method is better than traditional method with a more complete reduction of staistical fluctuation.

rate research

Read More

In this paper we consider two sources of enhancement for the meshfree Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving the accuracy of the particle approximation. Namely, we will consider shape functions constructed using: moving least-squares approximation (MLS); radial basis functions (RBF). Using MLS approximation is appealing because polynomial consistency of the particle approximation can be enforced. RBFs further appeal as they allow one to dispense with the smoothing-length -- the parameter in the SPH method which governs the number of particles within the support of the shape function. Currently, only ad hoc methods for choosing the smoothing-length exist. We ensure that any enhancement retains the conservative and meshfree nature of SPH. In doing so, we derive a new set of variationally-consistent hydrodynamic equations. Finally, we demonstrate the performance of the new equations on the Sod shock tube problem.
The investigation of samples with a spatial resolution in the nanometer range relies on the precise and stable positioning of the sample. Due to inherent mechanical instabilities of typical sample stages in optical microscopes, it is usually required to control and/or monitor the sample position during the acquisition. The tracking of sparsely distributed fiducial markers at high speed allows stabilizing the sample position at millisecond time scales. For this purpose, we present a scalable fitting algorithm with significantly improved performance for two-dimensional Gaussian fits as compared to Gpufit.
109 - Wenni Zheng , Pengbo Bo , Yang Liu 2011
We propose a novel method for fitting planar B-spline curves to unorganized data points. In traditional methods, optimization of control points and foot points are performed in two very time-consuming steps in each iteration: 1) control points are updated by setting up and solving a linear system of equations; and 2) foot points are computed by projecting each data point onto a B-spline curve. Our method uses the L-BFGS optimization method to optimize control points and foot points simultaneously and therefore it does not need to perform either matrix computation or foot point projection in every iteration. As a result, our method is much faster than existing methods.
Localized collocation methods based on radial basis functions (RBFs) for elliptic problems appear to be non-robust in the presence of Neumann boundary conditions. In this paper we overcome this issue by formulating the RBF-generated finite difference method in a discrete least-squares setting instead. This allows us to prove high-order convergence under node refinement and to numerically verify that the least-squares formulation is more accurate and robust than the collocation formulation. The implementation effort for the modified algorithm is comparable to that for the collocation method.
Point set is a flexible and lightweight representation widely used for 3D deep learning. However, their discrete nature prevents them from representing continuous and fine geometry, posing a major issue for learning-based shape generation. In this work, we turn the discrete point sets into smooth surfaces by introducing the well-known implicit moving least-squares (IMLS) surface formulation, which naturally defines locally implicit functions on point sets. We incorporate IMLS surface generation into deep neural networks for inheriting both the flexibility of point sets and the high quality of implicit surfaces. Our IMLSNet predicts an octree structure as a scaffold for generating MLS points where needed and characterizes shape geometry with learned local priors. Furthermore, our implicit function evaluation is independent of the neural network once the MLS points are predicted, thus enabling fast runtime evaluation. Our experiments on 3D object reconstruction demonstrate that IMLSNets outperform state-of-the-art learning-based methods in terms of reconstruction quality and computational efficiency. Extensive ablation tests also validate our network design and loss functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا