Localized collocation methods based on radial basis functions (RBFs) for elliptic problems appear to be non-robust in the presence of Neumann boundary conditions. In this paper we overcome this issue by formulating the RBF-generated finite difference method in a discrete least-squares setting instead. This allows us to prove high-order convergence under node refinement and to numerically verify that the least-squares formulation is more accurate and robust than the collocation formulation. The implementation effort for the modified algorithm is comparable to that for the collocation method.
Recently, collocation based radial basis function (RBF) partition of unity methods (PUM) for solving partial differential equations have been formulated and investigated numerically and theoretically. When combined with stable evaluation methods such as the RBF-QR method, high order convergence rates can be achieved and sustained under refinement. However, some numerical issues remain. The method is sensitive to the node layout, and condition numbers increase with the refinement level. Here, we propose a modified formulation based on least squares approximation. We show that the sensitivity to node layout is removed and that conditioning can be controlled through oversampling. We derive theoretical error estimates both for the collocation and least squares RBF-PUM. Numerical experiments are performed for the Poisson equation in two and three space dimensions for regular and irregular geometries. The convergence experiments confirm the theoretical estimates, and the least squares formulation is shown to be 5-10 times faster than the collocation formulation for the same accuracy.
The thoracic diaphragm is the muscle that drives the respiratory cycle of a human being. Using a system of partial differential equations (PDEs) that models linear elasticity we compute displacements and stresses in a two-dimensional cross section of the diaphragm in its contracted state. The boundary data consists of a mix of displacement and traction conditions. If these are imposed as they are, and the conditions are not compatible, this leads to reduced smoothness of the solution. Therefore, the boundary data is first smoothed using the least-squares radial basis function generated finite difference (RBF-FD) framework. Then the boundary conditions are reformulated as a Robin boundary condition with smooth coefficients. The same framework is also used to approximate the boundary curve of the diaphragm cross section based on data obtained from a slice of a computed tomography (CT) scan. To solve the PDE we employ the unfitted least-squares RBF-FD method. This makes it easier to handle the geometry of the diaphragm, which is thin and non-convex. We show numerically that our solution converges with high-order towards a finite element solution evaluated on a fine grid. Through this simplified numerical model we also gain an insight into the challenges associated with the diaphragm geometry and the boundary conditions before approaching a more complex three-dimensional model.
In this paper we consider two sources of enhancement for the meshfree Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving the accuracy of the particle approximation. Namely, we will consider shape functions constructed using: moving least-squares approximation (MLS); radial basis functions (RBF). Using MLS approximation is appealing because polynomial consistency of the particle approximation can be enforced. RBFs further appeal as they allow one to dispense with the smoothing-length -- the parameter in the SPH method which governs the number of particles within the support of the shape function. Currently, only ad hoc methods for choosing the smoothing-length exist. We ensure that any enhancement retains the conservative and meshfree nature of SPH. In doing so, we derive a new set of variationally-consistent hydrodynamic equations. Finally, we demonstrate the performance of the new equations on the Sod shock tube problem.
There are plenty of applications and analysis for time-independent elliptic partial differential equations in the literature hinting at the benefits of overtesting by using more collocation conditions than the number of basis functions. Overtesting not only reduces the problem size, but is also known to be necessary for stability and convergence of widely used unsymmetric Kansa-type strong-form collocation methods. We consider kernel-based meshfree methods, which is a method of lines with collocation and overtesting spatially, for solving parabolic partial differential equations on surfaces without parametrization. In this paper, we extend the time-independent convergence theories for overtesting techniques to the parabolic equations on smooth and closed surfaces.
Consider using the right-preconditioned generalized minimal residual (AB-GMRES) method, which is an efficient method for solving underdetermined least squares problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-conditioned problems, the iterates of the AB-GMRES method may diverge. This is mainly because the Hessenberg matrix in the GMRES method becomes very ill-conditioned so that the backward substitution of the resulting triangular system becomes numerically unstable. We propose a stabilized GMRES based on solving the normal equations corresponding to the above triangular system using the standard Cholesky decomposition. This has the effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead to an inaccurate solution. Thus, the process becomes numerically stable and the system becomes consistent, rendering better convergence and a more accurate solution. Numerical experiments show that the proposed method is robust and efficient for solving inconsistent and ill-conditioned underdetermined least squares problems. The method can be considered as a way of making the GMRES stable for highly ill-conditioned inconsistent problems.
Igor Tominec
,Elisabeth Larsson
,Alfa Heryudono
.
(2020)
.
"A least squares radial basis function finite difference method with improved stability properties"
.
Igor Tominec
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا