Do you want to publish a course? Click here

Measuring the Impact of Readability Features in Fake News Detection

اكتشاف الأخبار المزيفة اعتماداً على معيار سهولة القراءة (مقروئية)

1139   1   0   0.0 ( 0 )
 Publication date 2020
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The proliferation of fake news is a current issue that influences a number of important areas of society, such as politics, economy and health. In the Natural Language Processing area, recent initiatives tried to detect fake news in different ways, ranging from language-based approaches to content-based verification. In such approaches, the choice of the features for the classification of fake and true news is one of the most important parts of the process. This paper presents a study on the impact of readability features to detect fake news for the Brazilian Portuguese language. The results show that such features are relevant to the task (achieving, alone, up to 92% classification accuracy) and may improve previous classification results.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية دراسة تأثير ميزات القابلية للقراءة في اكتشاف الأخبار الزائفة باللغة البرتغالية البرازيلية. تُظهر النتائج أن هذه الميزات ذات صلة كبيرة بالمهمة، حيث تحقق دقة تصنيف تصل إلى 92% عند استخدامها بمفردها، ويمكن أن تحسن النتائج السابقة في هذا المجال. تتناول الورقة أيضًا مقارنة بين الأساليب المختلفة لاكتشاف الأخبار الزائفة، بما في ذلك الأساليب الشبكية والأساليب اللغوية، وتستعرض الأدوات والموارد المستخدمة لاستخراج ميزات القابلية للقراءة. تُظهر التجارب أن دمج ميزات القابلية للقراءة مع الميزات اللغوية الأخرى يمكن أن يحسن دقة التصنيف إلى 93%. تقترح الورقة أيضًا اتجاهات مستقبلية للبحث، بما في ذلك دراسة ميزات التركيب النحوي والدلالي وتأثيرها على اكتشاف الأخبار الزائفة.
Critical review
دراسة نقدية: تعتبر هذه الورقة البحثية إضافة قيمة إلى مجال اكتشاف الأخبار الزائفة، خاصة فيما يتعلق باللغة البرتغالية البرازيلية. ومع ذلك، يمكن توجيه بعض الانتقادات البناءة لتحسين العمل المستقبلي. أولاً، تعتمد الدراسة بشكل كبير على ميزات القابلية للقراءة، والتي قد لا تكون كافية بمفردها لاكتشاف جميع أنواع الأخبار الزائفة، خاصة تلك التي تحتوي على حقائق جزئية أو معلومات مضللة بشكل معقد. ثانيًا، يمكن أن تكون النتائج متحيزة بسبب طبيعة مجموعة البيانات المستخدمة، والتي قد لا تمثل جميع أنواع الأخبار الزائفة بشكل كامل. ثالثًا، يمكن تحسين الدراسة من خلال استكشاف تأثير ميزات أخرى مثل ميزات الشبكات الاجتماعية أو البيانات الوصفية. وأخيرًا، يمكن أن تكون الدراسة أكثر شمولية إذا تم تطبيقها على لغات أخرى للتحقق من عمومية النتائج.
Questions related to the research
  1. ما هي الميزات الرئيسية التي تم استخدامها في هذه الدراسة لاكتشاف الأخبار الزائفة؟

    الميزات الرئيسية المستخدمة تشمل ميزات القابلية للقراءة مثل مؤشر فليش، ومؤشر برونيت، وصيغة ديل تشال، ومؤشر غونينغ فوغ، بالإضافة إلى ميزات التماسك النفسي واللغوي.

  2. ما هي دقة التصنيف التي تم تحقيقها باستخدام ميزات القابلية للقراءة فقط؟

    تم تحقيق دقة تصنيف تصل إلى 92% باستخدام ميزات القابلية للقراءة فقط.

  3. كيف يمكن تحسين دقة اكتشاف الأخبار الزائفة وفقًا للدراسة؟

    يمكن تحسين دقة اكتشاف الأخبار الزائفة من خلال دمج ميزات القابلية للقراءة مع ميزات لغوية أخرى مثل ميزات التركيب النحوي والدلالي، مما يزيد من دقة التصنيف إلى 93%.

  4. ما هي التحديات المستقبلية التي تقترحها الدراسة في مجال اكتشاف الأخبار الزائفة؟

    تقترح الدراسة استكشاف ميزات التركيب النحوي والدلالي بشكل أعمق، ودراسة تأثير ميزات القابلية للقراءة على أنواع أخرى من المحتوى المضلل مثل الأخبار الساخرة والمراجعات الرأي.


References used
Perez-Rosas, V., Kleinberg, B., Lefevre, A., and Mihalcea, ´ R. (2017). Automatic detection of fake news. CoRR, abs/1708.07104.
Perez-Rosas, V. and Mihalcea, R. (2015). Experiments in ´ open domain deception detection. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1120–1125.
rate research

Read More

Statements that are intentionally misstated (or manipulated) are of considerable interest to researchers, government, security, and financial systems. According to deception literature, there are reliable cues for detecting deception and the belief t hat liars give off cues that may indicate their deception is near-universal. Therefore, given that deceiving actions require advanced cognitive development that honesty simply does not require, as well as people's cognitive mechanisms have promising guidance for deception detection, in this Ph.D. ongoing research, we propose to examine discourse structure patterns in multilingual deceptive news corpora using the Rhetorical Structure Theory framework. Considering that our work is the first to exploit multilingual discourse-aware strategies for fake news detection, the research community currently lacks multilingual deceptive annotated corpora. Accordingly, this paper describes the current progress in this thesis, including (i) the construction of the first multilingual deceptive corpus, which was annotated by specialists according to the Rhetorical Structure Theory framework, and (ii) the introduction of two new proposed rhetorical relations: INTERJECTION and IMPERATIVE, which we assume to be relevant for the fake news detection task.
As the world continues to fight the COVID-19 pandemic, it is simultaneously fighting an infodemic' -- a flood of disinformation and spread of conspiracy theories leading to health threats and the division of society. To combat this infodemic, there i s an urgent need for benchmark datasets that can help researchers develop and evaluate models geared towards automatic detection of disinformation. While there are increasing efforts to create adequate, open-source benchmark datasets for English, comparable resources are virtually unavailable for German, leaving research for the German language lagging significantly behind. In this paper, we introduce the new benchmark dataset FANG-COVID consisting of 28,056 real and 13,186 fake German news articles related to the COVID-19 pandemic as well as data on their propagation on Twitter. Furthermore, we propose an explainable textual- and social context-based model for fake news detection, compare its performance to black-box'' models and perform feature ablation to assess the relative importance of human-interpretable features in distinguishing fake news from authentic news.
Fake news causes significant damage to society. To deal with these fake news, several studies on building detection models and arranging datasets have been conducted. Most of the fake news datasets depend on a specific time period. Consequently, the detection models trained on such a dataset have difficulty detecting novel fake news generated by political changes and social changes; they may possibly result in biased output from the input, including specific person names and organizational names. We refer to this problem as Diachronic Bias because it is caused by the creation date of news in each dataset. In this study, we confirm the bias, especially proper nouns including person names, from the deviation of phrase appearances in each dataset. Based on these findings, we propose masking methods using Wikidata to mitigate the influence of person names and validate whether they make fake news detection models robust through experiments with in-domain and out-of-domain data.
The widespread use of the Internet and the rapid dissemination of information poses the challenge of identifying the veracity of its content. Stance detection, which is the task of predicting the position of a text in regard to a specific target (e.g . claim or debate question), has been used to determine the veracity of information in tasks such as rumor classification and fake news detection. While most of the work and available datasets for stance detection address short texts snippets extracted from textual dialogues, social media platforms, or news headlines with a strong focus on the English language, there is a lack of resources targeting long texts in other languages. Our contribution in this paper is twofold. First, we present a German dataset of debate questions and news articles that is manually annotated for stance and emotion detection. Second, we leverage the dataset to tackle the supervised task of classifying the stance of a news article with regards to a debate question and provide baseline models as a reference for future work on stance detection in German news articles.
The exponential growth of the internet and social media in the past decade gave way to the increase in dissemination of false or misleading information. Since the 2016 US presidential election, the term fake news'' became increasingly popular and thi s phenomenon has received more attention. In the past years several fact-checking agencies were created, but due to the great number of daily posts on social media, manual checking is insufficient. Currently, there is a pressing need for automatic fake news detection tools, either to assist manual fact-checkers or to operate as standalone tools. There are several projects underway on this topic, but most of them focus on English. This research-in-progress paper discusses the employment of deep learning methods, and the development of a tool, for detecting false news in Portuguese. As a first step we shall compare well-established architectures that were tested in other languages and analyse their performance on our Portuguese data. Based on the preliminary results of these classifiers, we shall choose a deep learning model or combine several deep learning models which hold promise to enhance the performance of our fake news detection system.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا