Do you want to publish a course? Click here

GFST: Gender-Filtered Self-Training for More Accurate Gender in Translation

GFST: التدريب الذاتي المرشح للنوع الاجتماعي لمزيد من الدقة الجنس في الترجمة

270   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Targeted evaluations have found that machine translation systems often output incorrect gender in translations, even when the gender is clear from context. Furthermore, these incorrectly gendered translations have the potential to reflect or amplify social biases. We propose gender-filtered self-training (GFST) to improve gender translation accuracy on unambiguously gendered inputs. Our GFST approach uses a source monolingual corpus and an initial model to generate gender-specific pseudo-parallel corpora which are then filtered and added to the training data. We evaluate GFST on translation from English into five languages, finding that it improves gender accuracy without damaging generic quality. We also show the viability of GFST on several experimental settings, including re-training from scratch, fine-tuning, controlling the gender balance of the data, forward translation, and back-translation.



References used
https://aclanthology.org/
rate research

Read More

AbstractMachine translation (MT) technology has facilitated our daily tasks by providing accessible shortcuts for gathering, processing, and communicating information. However, it can suffer from biases that harm users and society at large. As a rela tively new field of inquiry, studies of gender bias in MT still lack cohesion. This advocates for a unified framework to ease future research. To this end, we: i) critically review current conceptualizations of bias in light of theoretical insights from related disciplines, ii) summarize previous analyses aimed at assessing gender bias in MT, iii) discuss the mitigating strategies proposed so far, and iv) point toward potential directions for future work.
Unsupervised neural machine translation (UNMT) that relies solely on massive monolingual corpora has achieved remarkable results in several translation tasks. However, in real-world scenarios, massive monolingual corpora do not exist for some extreme ly low-resource languages such as Estonian, and UNMT systems usually perform poorly when there is not adequate training corpus for one language. In this paper, we first define and analyze the unbalanced training data scenario for UNMT. Based on this scenario, we propose UNMT self-training mechanisms to train a robust UNMT system and improve its performance in this case. Experimental results on several language pairs show that the proposed methods substantially outperform conventional UNMT systems.
As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promis ing results for few-shot learning in ToD. In this paper, we devise a self-training approach to utilize the abundant unlabeled dialog data to further improve state-of-the-art pre-trained models in few-shot learning scenarios for ToD systems. Specifically, we propose a self-training approach that iteratively labels the most confident unlabeled data to train a stronger Student model. Moreover, a new text augmentation technique (GradAug) is proposed to better train the Student by replacing non-crucial tokens using a masked language model. We conduct extensive experiments and present analyses on four downstream tasks in ToD, including intent classification, dialog state tracking, dialog act prediction, and response selection. Empirical results demonstrate that the proposed self-training approach consistently improves state-of-the-art pre-trained models (BERT, ToD-BERT) when only a small number of labeled data are available.
State-of-the-art deep neural networks require large-scale labeled training data that is often expensive to obtain or not available for many tasks. Weak supervision in the form of domain-specific rules has been shown to be useful in such settings to a utomatically generate weakly labeled training data. However, learning with weak rules is challenging due to their inherent heuristic and noisy nature. An additional challenge is rule coverage and overlap, where prior work on weak supervision only considers instances that are covered by weak rules, thus leaving valuable unlabeled data behind. In this work, we develop a weak supervision framework (ASTRA) that leverages all the available data for a given task. To this end, we leverage task-specific unlabeled data through self-training with a model (student) that considers contextualized representations and predicts pseudo-labels for instances that may not be covered by weak rules. We further develop a rule attention network (teacher) that learns how to aggregate student pseudo-labels with weak rule labels, conditioned on their fidelity and the underlying context of an instance. Finally, we construct a semi-supervised learning objective for end-to-end training with unlabeled data, domain-specific rules, and a small amount of labeled data. Extensive experiments on six benchmark datasets for text classification demonstrate the effectiveness of our approach with significant improvements over state-of-the-art baselines.
With language models being deployed increasingly in the real world, it is essential to address the issue of the fairness of their outputs. The word embedding representations of these language models often implicitly draw unwanted associations that fo rm a social bias within the model. The nature of gendered languages like Hindi, poses an additional problem to the quantification and mitigation of bias, owing to the change in the form of the words in the sentence, based on the gender of the subject. Additionally, there is sparse work done in the realm of measuring and debiasing systems for Indic languages. In our work, we attempt to evaluate and quantify the gender bias within a Hindi-English machine translation system. We implement a modified version of the existing TGBI metric based on the grammatical considerations for Hindi. We also compare and contrast the resulting bias measurements across multiple metrics for pre-trained embeddings and the ones learned by our machine translation model.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا