يهدف سؤال متعدد اللغات، الرد على الرسم البياني للمعرفة (KGQA) إلى استخلاص إجابات من الرسم البياني المعرفي (KG) للأسئلة بلغات متعددة. لتكون قابلة للتطبيق على نطاق واسع، نركز على إعداد نقل الطلقة الصفرية. هذا هو، يمكننا فقط الوصول إلى البيانات التدريبية فقط بلغة موارد عالية، بينما تحتاج إلى الإجابة على أسئلة متعددة اللغات دون أي بيانات معدنية باللغات المستهدفة. يتم تشغيل نهج مباشر إلى نماذج متعددة اللغات المدربة مسبقا (على سبيل المثال، MBERT) للنقل عبر اللغات، ولكن هناك فجوة كبيرة من الأداء KGQA بين المصدر واللغات المستهدفة. في هذه الورقة، نستمسى تحريض معجم ثنائي اللغة دون مقابل (BLI) لخريطة الأسئلة التدريبية في لغة المصدر في تلك الموجودة في اللغة المستهدفة مثل بيانات التدريب المعزز، والتي تتحل إلى عدم تناسق اللغة بين التدريب والاستدلال. علاوة على ذلك، نقترح استراتيجية تعليمية عدائية لتخفيف اضطراب بناء الجملة في البيانات المعززة، مما يجعل النموذج يميل إلى كل من اللغة والبنيات الاستقلال. وبالتالي، فإن نموذجنا يضيق الفجوة في تحويل صفرية عبر اللغات. التجارب على مجموعة بيانات KGQA متعددة اللغات مع 11 لغة موارد صفرية تحقق من فعاليتها.
Multilingual question answering over knowledge graph (KGQA) aims to derive answers from a knowledge graph (KG) for questions in multiple languages. To be widely applicable, we focus on its zero-shot transfer setting. That is, we can only access training data in a high-resource language, while need to answer multilingual questions without any labeled data in target languages. A straightforward approach is resorting to pre-trained multilingual models (e.g., mBERT) for cross-lingual transfer, but there is a still significant gap of KGQA performance between source and target languages. In this paper, we exploit unsupervised bilingual lexicon induction (BLI) to map training questions in source language into those in target language as augmented training data, which circumvents language inconsistency between training and inference. Furthermore, we propose an adversarial learning strategy to alleviate syntax-disorder of the augmented data, making the model incline to both language- and syntax-independence. Consequently, our model narrows the gap in zero-shot cross-lingual transfer. Experiments on two multilingual KGQA datasets with 11 zero-resource languages verify its effectiveness.
References used
https://aclanthology.org/
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextual multilingual multimodal embeddings. Under a zero-s
Previous work mainly focuses on improving cross-lingual transfer for NLU tasks with a multilingual pretrained encoder (MPE), or improving the performance on supervised machine translation with BERT. However, it is under-explored that whether the MPE
Multilingual pre-trained models have achieved remarkable performance on cross-lingual transfer learning. Some multilingual models such as mBERT, have been pre-trained on unlabeled corpora, therefore the embeddings of different languages in the models
In cross-lingual text classification, it is required that task-specific training data in high-resource source languages are available, where the task is identical to that of a low-resource target language. However, collecting such training data can b
Pre-trained multilingual language encoders, such as multilingual BERT and XLM-R, show great potential for zero-shot cross-lingual transfer. However, these multilingual encoders do not precisely align words and phrases across languages. Especially, le