Do you want to publish a course? Click here

Improving Zero-Shot Cross-lingual Transfer for Multilingual Question Answering over Knowledge Graph

تحسين نقل الصفر - نقل عبر اللغات لسؤال متعدد اللغات الرد على الرسم البياني للمعرفة

328   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Multilingual question answering over knowledge graph (KGQA) aims to derive answers from a knowledge graph (KG) for questions in multiple languages. To be widely applicable, we focus on its zero-shot transfer setting. That is, we can only access training data in a high-resource language, while need to answer multilingual questions without any labeled data in target languages. A straightforward approach is resorting to pre-trained multilingual models (e.g., mBERT) for cross-lingual transfer, but there is a still significant gap of KGQA performance between source and target languages. In this paper, we exploit unsupervised bilingual lexicon induction (BLI) to map training questions in source language into those in target language as augmented training data, which circumvents language inconsistency between training and inference. Furthermore, we propose an adversarial learning strategy to alleviate syntax-disorder of the augmented data, making the model incline to both language- and syntax-independence. Consequently, our model narrows the gap in zero-shot cross-lingual transfer. Experiments on two multilingual KGQA datasets with 11 zero-resource languages verify its effectiveness.



References used
https://aclanthology.org/
rate research

Read More

This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextual multilingual multimodal embeddings. Under a zero-s hot setting, we empirically demonstrate that performance degrades significantly when we query the multilingual text-video model with non-English sentences. To address this problem, we introduce a multilingual multimodal pre-training strategy, and collect a new multilingual instructional video dataset (Multi-HowTo100M) for pre-training. Experiments on VTT show that our method significantly improves video search in non-English languages without additional annotations. Furthermore, when multilingual annotations are available, our method outperforms recent baselines by a large margin in multilingual text-to-video search on VTT and VATEX; as well as in multilingual text-to-image search on Multi30K. Our model and Multi-HowTo100M is available at http://github.com/berniebear/Multi-HT100M.
Previous work mainly focuses on improving cross-lingual transfer for NLU tasks with a multilingual pretrained encoder (MPE), or improving the performance on supervised machine translation with BERT. However, it is under-explored that whether the MPE can help to facilitate the cross-lingual transferability of NMT model. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with parallel dataset of only one language pair and an off-the-shelf MPE, then it is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. SixT leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. Using this method, SixT significantly outperforms mBART, a pretrained multilingual encoder-decoder model explicitly designed for NMT, with an average improvement of 7.1 BLEU on zero-shot any-to-English test sets across 14 source languages. Furthermore, with much less training computation cost and training data, our model achieves better performance on 15 any-to-English test sets than CRISS and m2m-100, two strong multilingual NMT baselines.
Multilingual pre-trained models have achieved remarkable performance on cross-lingual transfer learning. Some multilingual models such as mBERT, have been pre-trained on unlabeled corpora, therefore the embeddings of different languages in the models may not be aligned very well. In this paper, we aim to improve the zero-shot cross-lingual transfer performance by proposing a pre-training task named Word-Exchange Aligning Model (WEAM), which uses the statistical alignment information as the prior knowledge to guide cross-lingual word prediction. We evaluate our model on multilingual machine reading comprehension task MLQA and natural language interface task XNLI. The results show that WEAM can significantly improve the zero-shot performance.
In cross-lingual text classification, it is required that task-specific training data in high-resource source languages are available, where the task is identical to that of a low-resource target language. However, collecting such training data can b e infeasible because of the labeling cost, task characteristics, and privacy concerns. This paper proposes an alternative solution that uses only task-independent word embeddings of high-resource languages and bilingual dictionaries. First, we construct a dictionary-based heterogeneous graph (DHG) from bilingual dictionaries. This opens the possibility to use graph neural networks for cross-lingual transfer. The remaining challenge is the heterogeneity of DHG because multiple languages are considered. To address this challenge, we propose dictionary-based heterogeneous graph neural network (DHGNet) that effectively handles the heterogeneity of DHG by two-step aggregations, which are word-level and language-level aggregations. Experimental results demonstrate that our method outperforms pretrained models even though it does not access to large corpora. Furthermore, it can perform well even though dictionaries contain many incorrect translations. Its robustness allows the usage of a wider range of dictionaries such as an automatically constructed dictionary and crowdsourced dictionary, which are convenient for real-world applications.
Pre-trained multilingual language encoders, such as multilingual BERT and XLM-R, show great potential for zero-shot cross-lingual transfer. However, these multilingual encoders do not precisely align words and phrases across languages. Especially, le arning alignments in the multilingual embedding space usually requires sentence-level or word-level parallel corpora, which are expensive to be obtained for low-resource languages. An alternative is to make the multilingual encoders more robust; when fine-tuning the encoder using downstream task, we train the encoder to tolerate noise in the contextual embedding spaces such that even if the representations of different languages are not aligned well, the model can still achieve good performance on zero-shot cross-lingual transfer. In this work, we propose a learning strategy for training robust models by drawing connections between adversarial examples and the failure cases of zero-shot cross-lingual transfer. We adopt two widely used robust training methods, adversarial training and randomized smoothing, to train the desired robust model. The experimental results demonstrate that robust training improves zero-shot cross-lingual transfer on text classification tasks. The improvement is more significant in the generalized cross-lingual transfer setting, where the pair of input sentences belong to two different languages.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا