نحن نحقق في تنبؤات الكراهية المضادة للآسيوية بين مستخدمي Twitter في جميع أنحاء Covid-19.مع ظهور كره الأجانب والاستقطاب الذي رافق استخدام وسائل التواصل الاجتماعي الواسع النطاق في العديد من الدول، أصبحت الكراهية عبر الإنترنت قضية اجتماعية كبرى، وجذب العديد من الباحثين.هنا، نطبق تقنيات معالجة اللغة الطبيعية لتوصيف مستخدمي وسائل التواصل الاجتماعي الذين بدأوا في نشر رسائل الكراهية المضادة للآسيوية خلال CovID-19.قارننا مجموعتين من المستخدمين --- أولئك الذين نشروا من المضادة للآسيا وأولئك الذين لم يفعلوا - فيما يتعلق بمجموعة غنية من الميزات المقاسة بالبيانات قبل CovID-19 وإظهار أنه من الممكن التنبؤ الذي في وقت لاحقنشرت المناهضة للآسيا.يؤكد تحليلنا للميزات التنبؤية على التأثير المحتمل لوسائط الإعلام وإعلام المعلومات التي تبلغ عن الكراهية عبر الإنترنت وتدعو إلى مزيد من التحقيق في دور شبكات الاتصالات الاستقطابية وسائط الإعلام.
We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attracting many researchers. Here, we apply natural language processing techniques to characterize social media users who began to post anti-Asian hate messages during COVID-19. We compare two user groups---those who posted anti-Asian slurs and those who did not---with respect to a rich set of features measured with data prior to COVID-19 and show that it is possible to predict who later publicly posted anti-Asian slurs. Our analysis of predictive features underlines the potential impact of news media and information sources that report on online hate and calls for further investigation into the role of polarized communication networks and news media.
References used
https://aclanthology.org/
In this paper, we present ArCOV-19, an Arabic COVID-19 Twitter dataset that spans one year, covering the period from 27th of January 2020 till 31st of January 2021. ArCOV-19 is the first publicly-available Arabic Twitter dataset covering COVID-19 pan
We propose semantic visualization as a linguistic visual analytic method. It can enable exploration and discovery over large datasets of complex networks by exploiting the semantics of the relations in them. This involves extracting information, appl
This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 5
Conversational Agents (CAs) can be a proxy for disseminating information and providing support to the public, especially in times of crisis. CAs can scale to reach larger numbers of end-users than human operators, while they can offer information int
We present a COVID-19 news dashboard which visualizes sentiment in pandemic news coverage in different languages across Europe. The dashboard shows analyses for positive/neutral/negative sentiment and moral sentiment for news articles across countrie