Do you want to publish a course? Click here

Predicting Anti-Asian Hateful Users on Twitter during COVID-19

التنبؤ بالمستخدمين البغيضين المضاد للآسيا على تويتر خلال Covid-19

401   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attracting many researchers. Here, we apply natural language processing techniques to characterize social media users who began to post anti-Asian hate messages during COVID-19. We compare two user groups---those who posted anti-Asian slurs and those who did not---with respect to a rich set of features measured with data prior to COVID-19 and show that it is possible to predict who later publicly posted anti-Asian slurs. Our analysis of predictive features underlines the potential impact of news media and information sources that report on online hate and calls for further investigation into the role of polarized communication networks and news media.



References used
https://aclanthology.org/
rate research

Read More

In this paper, we present ArCOV-19, an Arabic COVID-19 Twitter dataset that spans one year, covering the period from 27th of January 2020 till 31st of January 2021. ArCOV-19 is the first publicly-available Arabic Twitter dataset covering COVID-19 pan demic that includes about 2.7M tweets alongside the propagation networks of the most-popular subset of them (i.e., most-retweeted and -liked). The propagation networks include both retweetsand conversational threads (i.e., threads of replies). ArCOV-19 is designed to enable research under several domains including natural language processing, information retrieval, and social computing. Preliminary analysis shows that ArCOV-19 captures rising discussions associated with the first reported cases of the disease as they appeared in the Arab world.In addition to the source tweets and the propagation networks, we also release the search queries and the language-independent crawler used to collect the tweets to encourage the curation of similar datasets.
We propose semantic visualization as a linguistic visual analytic method. It can enable exploration and discovery over large datasets of complex networks by exploiting the semantics of the relations in them. This involves extracting information, appl ying parameter reduction operations, building hierarchical data representation and designing visualization. We also present the accompanying COVID-SemViz a searchable and interactive visualization system for knowledge exploration of COVID-19 data to demonstrate the application of our proposed method. In the user studies, users found that semantic visualization-powered COVID-SemViz is helpful in terms of finding relevant information and discovering unknown associations.
This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 5 00 sentences that were manually selected from the CORD-19 corpus. Afterwards, a baseline text-mining pipeline is designed and evaluated via a large batch of 100,959 sentences. We present a qualitative analysis of the most interesting facts automatically extracted and highlight possible future lines of development. The preliminary results show that general-purpose semantic models are a useful tool for discovering fine-grained knowledge in large corpora of scientific documents.
Conversational Agents (CAs) can be a proxy for disseminating information and providing support to the public, especially in times of crisis. CAs can scale to reach larger numbers of end-users than human operators, while they can offer information int eractively and engagingly. In this work, we present Theano, a Greek-speaking virtual assistant for COVID-19. Theano presents users with COVID-19 statistics and facts and informs users about the best health practices as well as the latest COVID-19 related guidelines. Additionally, Theano provides support to end-users by helping them self-assess their symptoms and redirecting them to first-line health workers. The relevant, localized information that Theano provides, makes it a valuable tool for combating COVID-19 in Greece. Theano has already conversed with different users in more than 170 different conversations through a web interface as a chatbot and over the phone as a voice bot.
We present a COVID-19 news dashboard which visualizes sentiment in pandemic news coverage in different languages across Europe. The dashboard shows analyses for positive/neutral/negative sentiment and moral sentiment for news articles across countrie s and languages. First we extract news articles from news-crawl. Then we use a pre-trained multilingual BERT model for sentiment analysis of news article headlines and a dictionary and word vectors -based method for moral sentiment analysis of news articles. The resulting dashboard gives a unified overview of news events on COVID-19 news overall sentiment, and the region and language of publication from the period starting from the beginning of January 2020 to the end of January 2021.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا