العديد من النماذج الإحصائية لها دقة عالية على معايير الاختبار، ولكنها ليست تفسيرها، لا يمكن إعادة استخدام النضال في سيناريوهات الموارد المنخفضة، ولا يمكن إعادة استخدامها لمهام متعددة، ولا يمكن دمج خبرات المجال بسهولة.هذه العوامل تحد من استخدامها، لا سيما في إعدادات الصحة العقلية، حيث من الصعب التعليق على مجموعات البيانات والنواتج النموذجية لها تأثير كبير.نقدم بنية micromodel لمعالجة هذه التحديات.يسمح نهجنا الباحثين ببناء تمثيلات قابلة للتفسير تضمين معرفة المجال وتقديم توضيحات خلال عملية قرار النموذج.نوضح الفكرة على مهام الصحة العقلية المتعددة: تصنيف الاكتئاب، تصنيف PTSD، وتقييم المخاطر الانتحارية.تنتج أنظمتنا باستمرار نتائج قوية، حتى في سيناريوهات الموارد المنخفضة، وهي أكثر تفسيرا من الأساليب البديلة.
Many statistical models have high accuracy on test benchmarks, but are not explainable, struggle in low-resource scenarios, cannot be reused for multiple tasks, and cannot easily integrate domain expertise. These factors limit their use, particularly in settings such as mental health, where it is difficult to annotate datasets and model outputs have significant impact. We introduce a micromodel architecture to address these challenges. Our approach allows researchers to build interpretable representations that embed domain knowledge and provide explanations throughout the model's decision process. We demonstrate the idea on multiple mental health tasks: depression classification, PTSD classification, and suicidal risk assessment. Our systems consistently produce strong results, even in low-resource scenarios, and are more interpretable than alternative methods.
References used
https://aclanthology.org/
Developing documentation guidelines and easy-to-use templates for datasets and models is a challenging task, especially given the variety of backgrounds, skills, and incentives of the people involved in the building of natural language processing (NL
With mental health as a problem domain in NLP, the bulk of contemporary literature revolves around building better mental illness prediction models. The research focusing on the identification of discussion clusters in online mental health communitie
This Research aims to:
· Shed light on various aspects of administrative process re-engineering method
in terms of concept, implementation mechanism and its benefits.
· The need of the Palestinian universities as academy institutions to apply the
This paper aims at providing a comprehensive overview of recent developments in dialogue state tracking (DST) for task-oriented conversational systems. We introduce the task, the main datasets that have been exploited as well as their evaluation metr
Recent work has adopted models of pragmatic reasoning for the generation of informative language in, e.g., image captioning. We propose a simple but highly effective relaxation of fully rational decoding, based on an existing incremental and characte