نهج الترجمة الآلية غير التلقائية (NAT) تتيح الجيل السريع عن طريق الاستفادة من العمليات الاسرد الاشتراكية.عنق الزجاجة المتبقية في هذه النماذج هي طبقات فك التشفير الخاصة بهم؛لسوء الحظ على عكس النماذج التلقائية (Kasai et al.، 2020)، إزالة طبقات فك ترميز من نماذج NAT تتحلل بشكل كبير الدقة.يقترح هذا العمل نموذجا تسلسل إلى شعرية يحل محل وحدة فك التشفير مع شعرية البحث.تقوم نهجنا أولا بإنشاء شعرية مرشح باستخدام عمليات البحث الفعالة، ويولد درجات شعرية من تشفير عميق، وأخيرا يجد أفضل المسار باستخدام البرمجة الديناميكية.تظهر التجارب على ثلاث مجموعات بيانات الترجمة الآلية أن طريقتنا أسرع من نهج الجيل غير التلقائي الماضي غير الدقيق، وأكثر دقة من الحد السامي من عدد طبقات فك التشفير.
Non-autoregressive machine translation (NAT) approaches enable fast generation by utilizing parallelizable generative processes. The remaining bottleneck in these models is their decoder layers; unfortunately unlike in autoregressive models (Kasai et al., 2020), removing decoder layers from NAT models significantly degrades accuracy. This work proposes a sequence-to-lattice model that replaces the decoder with a search lattice. Our approach first constructs a candidate lattice using efficient lookup operations, generates lattice scores from a deep encoder, and finally finds the best path using dynamic programming. Experiments on three machine translation datasets show that our method is faster than past non-autoregressive generation approaches, and more accurate than naively reducing the number of decoder layers.
References used
https://aclanthology.org/
Complex natural language applications such as speech translation or pivot translation traditionally rely on cascaded models. However,cascaded models are known to be prone to error propagation and model discrepancy problems. Furthermore, there is no p
Current benchmark tasks for natural language processing contain text that is qualitatively different from the text used in informal day to day digital communication. This discrepancy has led to severe performance degradation of state-of-the-art NLP m
Natural language (NL) explanations of model predictions are gaining popularity as a means to understand and verify decisions made by large black-box pre-trained models, for tasks such as Question Answering (QA) and Fact Verification. Recently, pre-tr
Predicting linearized Abstract Meaning Representation (AMR) graphs using pre-trained sequence-to-sequence Transformer models has recently led to large improvements on AMR parsing benchmarks. These parsers are simple and avoid explicit modeling of str
Recently, neural machine translation is widely used for its high translation accuracy, but it is also known to show poor performance at long sentence translation. Besides, this tendency appears prominently for low resource languages. We assume that t