أصبح توحيد التعلم الصوتي واللغوي أمرا مهما بشكل متزايد بنقل المعرفة المستفادة بشأن وفرة بيانات لغة الموارد عالية الموارد للحصول على التعرف على الكلام المنخفض الموارد. الأساليب الحالية ببساطة تتالي النماذج الصوتية واللغة المدربة مسبقا لتعلم النقل من الكلام إلى النص. ومع ذلك، فإن كيفية حل تناقض التمثيل في الكلام والنص غير مستكشفة، مما يعيق استخدام المعلومات الصوتية واللغوية. علاوة على ذلك، يعمل الأمر السابق ببساطة استبدال طبقة تضمين نموذج اللغة المدربة مسبقا مع الميزات الصوتية، والتي قد تتسبب في مشكلة نسيان الكارثي. في هذا العمل، نقدم WAV-Bert، وهي طريقة تعليمية تعاونية وصوتية وممثلة على الصمامات والاستفادة من المعلومات السياقية من الكلام والنص. على وجه التحديد، نقوم بتحديد نموذج صوت صوتي مدرب مسبقا (WAV2VEC 2.0) ونموذج لغة (Bert) في إطار قابل للتدريب من طرف إلى نهاية. تم تصميم وحدة تجميع التمثيل لتجميع التمثيل الصوتي واللغوي، ويتم تقديم وحدة الانتباه التضمين لإدماج المعلومات الصوتية في بيرت، والتي يمكن أن تسهل بفعالية تعاون نماذج مدربة مسبقا وبالتالي تعزيز تعلم التمثيل. تشير التجارب الواسعة إلى أن لدينا WAV-Bert تنفأ بشكل كبير على النهج الحالية وتحقيق الأداء الحديث في التعرف على الكلام المنخفض الموارد.
Unifying acoustic and linguistic representation learning has become increasingly crucial to transfer the knowledge learned on the abundance of high-resource language data for low-resource speech recognition. Existing approaches simply cascade pre-trained acoustic and language models to learn the transfer from speech to text. However, how to solve the representation discrepancy of speech and text is unexplored, which hinders the utilization of acoustic and linguistic information. Moreover, previous works simply replace the embedding layer of the pre-trained language model with the acoustic features, which may cause the catastrophic forgetting problem. In this work, we introduce Wav-BERT, a cooperative acoustic and linguistic representation learning method to fuse and utilize the contextual information of speech and text. Specifically, we unify a pre-trained acoustic model (wav2vec 2.0) and a language model (BERT) into an end-to-end trainable framework. A Representation Aggregation Module is designed to aggregate acoustic and linguistic representation, and an Embedding Attention Module is introduced to incorporate acoustic information into BERT, which can effectively facilitate the cooperation of two pre-trained models and thus boost the representation learning. Extensive experiments show that our Wav-BERT significantly outperforms the existing approaches and achieves state-of-the-art performance on low-resource speech recognition.
References used
https://aclanthology.org/
This paper explores the effect of using multitask learning for abstractive summarization in the context of small training corpora. In particular, we incorporate four different tasks (extractive summarization, language modeling, concept detection, and
The combination of multilingual pre-trained representations and cross-lingual transfer learning is one of the most effective methods for building functional NLP systems for low-resource languages. However, for extremely low-resource languages without
Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem
While Automatic Speech Recognition has been shown to be vulnerable to adversarial attacks, defenses against these attacks are still lagging. Existing, naive defenses can be partially broken with an adaptive attack. In classification tasks, the Random
We address the task of automatic hate speech detection for low-resource languages. Rather than collecting and annotating new hate speech data, we show how to use cross-lingual transfer learning to leverage already existing data from higher-resource l