مزيج من التمثيلات المتعددة اللغات المدربة مسبقا وتعلم النقل عبر اللغات هو أحد أكثر الطرق فعالية لبناء أنظمة NLP الوظيفية لغات الموارد المنخفضة. ومع ذلك، بالنسبة لغات الموارد المنخفضة للغاية دون نطاق واسع النطاق لأحادية النطاق للتدريب المسبق أو البيانات المشروحة المكافحة للضبط بشكل جيد، لا يزال التعلم التحويل مهمة مفهومة وصعبة. علاوة على ذلك، يوضح العمل الحديث أن تمثيلات متعددة اللغات هي بفك الشفقة على اللغات، مما جلب تحديات إضافية للتحويل إلى لغات الموارد المنخفضة للغاية. في هذه الورقة، نقترح metaxl، إطار التعلم التعلم التعلم الذي يتعلم تحويل التمثيلات بحكمة من اللغات المساعدة إلى هدف واحد ويجلب مساحات تمثيلها أقرب إلى النقل الفعال. تجارب مكثفة على لغات الموارد المنخفضة في العالم الحقيقي - دون الوصول إلى كورسا أحادية واسعة النطاق أو كميات كبيرة من البيانات المسمى - للمهام مثل تحليل المشاعر المتبادلة والاعتراف كيان المسمى إظهار فعالية نهجنا. رمز Metaxl متوفر علنا في github.com/microsoft/metaxl.
The combination of multilingual pre-trained representations and cross-lingual transfer learning is one of the most effective methods for building functional NLP systems for low-resource languages. However, for extremely low-resource languages without large-scale monolingual corpora for pre-training or sufficient annotated data for fine-tuning, transfer learning remains an understudied and challenging task. Moreover, recent work shows that multilingual representations are surprisingly disjoint across languages, bringing additional challenges for transfer onto extremely low-resource languages. In this paper, we propose MetaXL, a meta-learning based framework that learns to transform representations judiciously from auxiliary languages to a target one and brings their representation spaces closer for effective transfer. Extensive experiments on real-world low-resource languages -- without access to large-scale monolingual corpora or large amounts of labeled data -- for tasks like cross-lingual sentiment analysis and named entity recognition show the effectiveness of our approach. Code for MetaXL is publicly available at github.com/microsoft/MetaXL.
References used
https://aclanthology.org/
Meta-learning has achieved great success in leveraging the historical learned knowledge to facilitate the learning process of the new task. However, merely learning the knowledge from the historical tasks, adopted by current meta-learning algorithms,
This paper explores the effect of using multitask learning for abstractive summarization in the context of small training corpora. In particular, we incorporate four different tasks (extractive summarization, language modeling, concept detection, and
We propose a method to distill a language-agnostic meaning embedding from a multilingual sentence encoder. By removing language-specific information from the original embedding, we retrieve an embedding that fully represents the sentence's meaning. T
Unifying acoustic and linguistic representation learning has become increasingly crucial to transfer the knowledge learned on the abundance of high-resource language data for low-resource speech recognition. Existing approaches simply cascade pre-tra
We propose a new approach for learning contextualised cross-lingual word embeddings based on a small parallel corpus (e.g. a few hundred sentence pairs). Our method obtains word embeddings via an LSTM encoder-decoder model that simultaneously transla