Do you want to publish a course? Click here

Homonymy and Polysemy Detection with Multilingual Information

الكشف المثلي الجنسي و Polysemy مع معلومات متعددة اللغات

333   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Deciding whether a semantically ambiguous word is homonymous or polysemous is equivalent to establishing whether it has any pair of senses that are semantically unrelated. We present novel methods for this task that leverage information from multilingual lexical resources. We formally prove the theoretical properties that provide the foundation for our methods. In particular, we show how the One Homonym Per Translation hypothesis of Hauer and Kondrak (2020a) follows from the synset properties formulated by Hauer and Kondrak (2020b). Experimental evaluation shows that our approach sets a new state of the art for homonymy detection.



References used
https://aclanthology.org/
rate research

Read More

We propose a novel method of homonymy-polysemy discrimination for three Indo-European Languages (English, Spanish and Polish). Support vector machines and LASSO logistic regression were successfully used in this task, outperforming baselines. The fea ture set utilised lemma properties, gloss similarities, graph distances and polysemy patterns. The proposed ML models performed equally well for English and the other two languages (constituting testing data sets). The algorithms not only ruled out most cases of homonymy but also were efficacious in distinguishing between closer and indirect semantic relatedness.
One of the central aspects of contextualised language models is that they should be able to distinguish the meaning of lexically ambiguous words by their contexts. In this paper we investigate the extent to which the contextualised embeddings of word forms that display multiplicity of sense reflect traditional distinctions of polysemy and homonymy. To this end, we introduce an extended, human-annotated dataset of graded word sense similarity and co-predication acceptability, and evaluate how well the similarity of embeddings predicts similarity in meaning. Both types of human judgements indicate that the similarity of polysemic interpretations falls in a continuum between identity of meaning and homonymy. However, we also observe significant differences within the similarity ratings of polysemes, forming consistent patterns for different types of polysemic sense alternation. Our dataset thus appears to capture a substantial part of the complexity of lexical ambiguity, and can provide a realistic test bed for contextualised embeddings. Among the tested models, BERT Large shows the strongest correlation with the collected word sense similarity ratings, but struggles to consistently replicate the observed similarity patterns. When clustering ambiguous word forms based on their embeddings, the model displays high confidence in discerning homonyms and some types of polysemic alternations, but consistently fails for others.
We present a systematic study on multilingual and cross-lingual intent detection (ID) from spoken data. The study leverages a new resource put forth in this work, termed MInDS-14, a first training and evaluation resource for the ID task with spoken d ata. It covers 14 intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties. Our key results indicate that combining machine translation models with state-of-the-art multilingual sentence encoders (e.g., LaBSE) yield strong intent detectors in the majority of target languages covered in MInDS-14, and offer comparative analyses across different axes: e.g., translation direction, impact of speech recognition, data augmentation from a related domain. We see this work as an important step towards more inclusive development and evaluation of multilingual ID from spoken data, hopefully in a much wider spectrum of languages compared to prior work.
Statements that are intentionally misstated (or manipulated) are of considerable interest to researchers, government, security, and financial systems. According to deception literature, there are reliable cues for detecting deception and the belief t hat liars give off cues that may indicate their deception is near-universal. Therefore, given that deceiving actions require advanced cognitive development that honesty simply does not require, as well as people's cognitive mechanisms have promising guidance for deception detection, in this Ph.D. ongoing research, we propose to examine discourse structure patterns in multilingual deceptive news corpora using the Rhetorical Structure Theory framework. Considering that our work is the first to exploit multilingual discourse-aware strategies for fake news detection, the research community currently lacks multilingual deceptive annotated corpora. Accordingly, this paper describes the current progress in this thesis, including (i) the construction of the first multilingual deceptive corpus, which was annotated by specialists according to the Rhetorical Structure Theory framework, and (ii) the introduction of two new proposed rhetorical relations: INTERJECTION and IMPERATIVE, which we assume to be relevant for the fake news detection task.
The interest in offensive content identification in social media has grown substantially in recent years. Previous work has dealt mostly with post level annotations. However, identifying offensive spans is useful in many ways. To help coping with thi s important challenge, we present MUDES, a multilingual system to detect offensive spans in texts. MUDES features pre-trained models, a Python API for developers, and a user-friendly web-based interface. A detailed description of MUDES' components is presented in this paper.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا