نمت الاهتمام بتحديد المحتوى الهجومي في وسائل التواصل الاجتماعي بشكل كبير في السنوات الأخيرة.تعامل العمل السابق في الغالب مع التعليقات التوضيحية على مستوى المشاركة.ومع ذلك، فإن تحديد المواقف الهجومية مفيد بطرق عديدة.للمساعدة في التعامل مع هذا التحدي المهم، نقدم MUSES، وهو نظام متعدد اللغات لاكتشاف يمتد الهجومية في النصوص.تتميز MUSES بنماذج مدربة مسبقا، و API بيثون للمطورين، وواجهة سهلة الاستخدام على الويب.يتم تقديم وصف مفصل لمكونات الطين في هذه الورقة.
The interest in offensive content identification in social media has grown substantially in recent years. Previous work has dealt mostly with post level annotations. However, identifying offensive spans is useful in many ways. To help coping with this important challenge, we present MUDES, a multilingual system to detect offensive spans in texts. MUDES features pre-trained models, a Python API for developers, and a user-friendly web-based interface. A detailed description of MUDES' components is presented in this paper.
References used
https://aclanthology.org/
Sarcasm detection is one of the top challenging tasks in text classification, particularly for informal Arabic with high syntactic and semantic ambiguity. We propose two systems that harness knowledge from multiple tasks to improve the performance of
We present a systematic study on multilingual and cross-lingual intent detection (ID) from spoken data. The study leverages a new resource put forth in this work, termed MInDS-14, a first training and evaluation resource for the ID task with spoken d
Offensive language detection (OLD) has received increasing attention due to its societal impact. Recent work shows that bidirectional transformer based methods obtain impressive performance on OLD. However, such methods usually rely on large-scale we
The widespread presence of offensive language on social media motivated the development of systems capable of recognizing such content automatically. Apart from a few notable exceptions, most research on automatic offensive language identification ha
Statements that are intentionally misstated (or manipulated) are of considerable interest to researchers, government, security, and financial systems. According to deception literature, there are reliable cues for detecting deception and the belief t