Do you want to publish a course? Click here

On Knowledge Distillation for Translating Erroneous Speech Transcriptions

على تقطير المعرفة لترجمة نسخ خطاب خاطئة

619   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Recent studies argue that knowledge distillation is promising for speech translation (ST) using end-to-end models. In this work, we investigate the effect of knowledge distillation with a cascade ST using automatic speech recognition (ASR) and machine translation (MT) models. We distill knowledge from a teacher model based on human transcripts to a student model based on erroneous transcriptions. Our experimental results demonstrated that knowledge distillation is beneficial for a cascade ST. Further investigation that combined knowledge distillation and fine-tuning revealed that the combination consistently improved two language pairs: English-Italian and Spanish-English.



References used
https://aclanthology.org/
rate research

Read More

A conventional approach to improving the performance of end-to-end speech translation (E2E-ST) models is to leverage the source transcription via pre-training and joint training with automatic speech recognition (ASR) and neural machine translation ( NMT) tasks. However, since the input modalities are different, it is difficult to leverage source language text successfully. In this work, we focus on sequence-level knowledge distillation (SeqKD) from external text-based NMT models. To leverage the full potential of the source language information, we propose backward SeqKD, SeqKD from a target-to-source backward NMT model. To this end, we train a bilingual E2E-ST model to predict paraphrased transcriptions as an auxiliary task with a single decoder. The paraphrases are generated from the translations in bitext via back-translation. We further propose bidirectional SeqKD in which SeqKD from both forward and backward NMT models is combined. Experimental evaluations on both autoregressive and non-autoregressive models show that SeqKD in each direction consistently improves the translation performance, and the effectiveness is complementary regardless of the model capacity.
To reduce a model size but retain performance, we often rely on knowledge distillation (KD) which transfers knowledge from a large teacher'' model to a smaller student'' model. However, KD on multimodal datasets such as vision-language tasks is relat ively unexplored, and digesting multimodal information is challenging since different modalities present different types of information. In this paper, we perform a large-scale empirical study to investigate the importance and effects of each modality in knowledge distillation. Furthermore, we introduce a multimodal knowledge distillation framework, modality-specific distillation (MSD), to transfer knowledge from a teacher on multimodal tasks by learning the teacher's behavior within each modality. The idea aims at mimicking a teacher's modality-specific predictions by introducing auxiliary loss terms for each modality. Furthermore, because each modality has different saliency for predictions, we define saliency scores for each modality and investigate saliency-based weighting schemes for the auxiliary losses. We further study a weight learning approach to learn the optimal weights on these loss terms. In our empirical analysis, we examine the saliency of each modality in KD, demonstrate the effectiveness of the weighting scheme in MSD, and show that it achieves better performance than KD on four multimodal datasets.
Although pre-trained big models (e.g., BERT, ERNIE, XLNet, GPT3 etc.) have delivered top performance in Seq2seq modeling, their deployments in real-world applications are often hindered by the excessive computations and memory demand involved. For ma ny applications, including named entity recognition (NER), matching the state-of-the-art result under budget has attracted considerable attention. Drawing power from the recent advance in knowledge distillation (KD), this work presents a novel distillation scheme to efficiently transfer the knowledge learned from big models to their more affordable counterpart. Our solution highlights the construction of surrogate labels through the k-best Viterbi algorithm to distill knowledge from the teacher model. To maximally assimilate knowledge into the student model, we propose a multi-grained distillation scheme, which integrates cross entropy involved in conditional random field (CRF) and fuzzy learning.To validate the effectiveness of our proposal, we conducted a comprehensive evaluation on five NER benchmarks, reporting cross-the-board performance gains relative to competing prior-arts. We further discuss ablation results to dissect our gains.
In this paper we apply self-knowledge distillation to text summarization which we argue can alleviate problems with maximum-likelihood training on single reference and noisy datasets. Instead of relying on one-hot annotation labels, our student summa rization model is trained with guidance from a teacher which generates smoothed labels to help regularize training. Furthermore, to better model uncertainty during training, we introduce multiple noise signals for both teacher and student models. We demonstrate experimentally on three benchmarks that our framework boosts the performance of both pretrained and non-pretrained summarizers achieving state-of-the-art results.
Pretrained transformer-based encoders such as BERT have been demonstrated to achieve state-of-the-art performance on numerous NLP tasks. Despite their success, BERT style encoders are large in size and have high latency during inference (especially o n CPU machines) which make them unappealing for many online applications. Recently introduced compression and distillation methods have provided effective ways to alleviate this shortcoming. However, the focus of these works has been mainly on monolingual encoders. Motivated by recent successes in zero-shot cross-lingual transfer learning using multilingual pretrained encoders such as mBERT, we evaluate the effectiveness of Knowledge Distillation (KD) both during pretraining stage and during fine-tuning stage on multilingual BERT models. We demonstrate that in contradiction to the previous observation in the case of monolingual distillation, in multilingual settings, distillation during pretraining is more effective than distillation during fine-tuning for zero-shot transfer learning. Moreover, we observe that distillation during fine-tuning may hurt zero-shot cross-lingual performance. Finally, we demonstrate that distilling a larger model (BERT Large) results in the strongest distilled model that performs best both on the source language as well as target languages in zero-shot settings.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا