تتمثل النهج التقليدي في تحسين أداء نماذج ترجمة الكلام في النهاية (E2E-St) في الاستفادة من النسخ المصدر عبر التدريب المسبق والتدريب المشترك مع التعرف على الكلام التلقائي (ASR) ومهام الترجمة الآلية العصبية (NMT). ومع ذلك، نظرا لأن طرائق الإدخال مختلفة، فمن الصعب الاستفادة من نص لغة المصدر بنجاح. في هذا العمل، نركز على تقطير المعرفة على مستوى التسلسل (SEQKD) من نماذج NMT الخارجية القائمة على النصوص. للاستفادة من الإمكانات الكاملة لمعلومات اللغة المصدر، نقترحنا على الوراء SEQKD، SEQKD من نموذج NMT للخلف إلى المصدر. تحقيقا لهذه الغاية، نقوم بتدريب نموذج ثنائي اللغة E2E-St للتنبؤ بالصايات بمثابة مهمة مساعدة مع وحدة فك ترميز واحدة. يتم إنشاء الصيغة من الترجمات في Bitex عبر الترجمة مرة أخرى. ونحن نقترح مزيدا من SEQKD ثنائي الاتجاه حيث يتم دمج SEQKD من نماذج NMT إلى الأمام والخلف. تظهر التقييمات التجريبية على كل من النماذج التلقائية وغير اللاحنة التلقائية أن Seqkd في كل اتجاه يحسن باستمرار أداء الترجمة، والفعالية مكملة بغض النظر عن القدرات النموذجية.
A conventional approach to improving the performance of end-to-end speech translation (E2E-ST) models is to leverage the source transcription via pre-training and joint training with automatic speech recognition (ASR) and neural machine translation (NMT) tasks. However, since the input modalities are different, it is difficult to leverage source language text successfully. In this work, we focus on sequence-level knowledge distillation (SeqKD) from external text-based NMT models. To leverage the full potential of the source language information, we propose backward SeqKD, SeqKD from a target-to-source backward NMT model. To this end, we train a bilingual E2E-ST model to predict paraphrased transcriptions as an auxiliary task with a single decoder. The paraphrases are generated from the translations in bitext via back-translation. We further propose bidirectional SeqKD in which SeqKD from both forward and backward NMT models is combined. Experimental evaluations on both autoregressive and non-autoregressive models show that SeqKD in each direction consistently improves the translation performance, and the effectiveness is complementary regardless of the model capacity.
References used
https://aclanthology.org/
This paper describes the submission of the NiuTrans end-to-end speech translation system for the IWSLT 2021 offline task, which translates from the English audio to German text directly without intermediate transcription. We use the Transformer-based
Recent studies argue that knowledge distillation is promising for speech translation (ST) using end-to-end models. In this work, we investigate the effect of knowledge distillation with a cascade ST using automatic speech recognition (ASR) and machin
Recently, end-to-end (E2E) trained models for question answering over knowledge graphs (KGQA) have delivered promising results using only a weakly supervised dataset. However, these models are trained and evaluated in a setting where hand-annotated q
Most previous studies on information status (IS) classification and bridging anaphora recognition assume that the gold mention or syntactic tree information is given (Hou et al., 2013; Roesiger et al., 2018; Hou, 2020; Yu and Poesio, 2020). In this p
This tutorial surveys the latest technical progress of syntactic parsing and the role of syntax in end-to-end natural language processing (NLP) tasks, in which semantic role labeling (SRL) and machine translation (MT) are the representative NLP tasks