على الرغم من أن النماذج الكبيرة المدربة مسبقا (E.G.، Bert، Ernie، Xlnet، GPT3 وما إلى ذلك) قدمت أداء أعلى في النمذجة SEQ2SEQ، وغالبا ما تعوق عمليات نشرها في تطبيقات العالم الحقيقي بواسطة الحسابات المفرطة وطلب الذاكرة المعنية. بالنسبة للعديد من التطبيقات، بما في ذلك التعرف على الكيان المسمى (NER)، فإن مطابقة النتيجة الحديثة تحت الميزانية قد جذبت اهتماما كبيرا. رسم الطاقة من التقدم الأخير في تقطير المعرفة (دينار كويتي)، يعرض هذا العمل مخطط تقطير جديد لنقل المعرفة بكفاءة المستفادة من النماذج الكبيرة إلى نظيرها أكثر بأسعار معقولة. يسلط حلنا الضوء على بناء الملصقات البديلة من خلال خوارزمية K-Best Viterbi إلى معرفة تقطر من طراز المعلم. لإحداث المعرفة إلى حد ما في نموذج الطالب، نقترح خطة تقطير متعددة الحبيبات، التي تدمج عبر الانتروبي الصليب المشارك في مجال عشوائي مشروط (CRF) والتعلم الغامض. للتحقق من صحة فعالية اقتراحنا، أجرينا تقييم شامل على خمسة نير معايير، الإبلاغ عن مكاسب أداء المجلس عبر المجلس بالنسبة للفنون السابقة المتنافسة. نناقش نتائج الآراء بشكل أكبر لتشريح مكاسبنا.
Although pre-trained big models (e.g., BERT, ERNIE, XLNet, GPT3 etc.) have delivered top performance in Seq2seq modeling, their deployments in real-world applications are often hindered by the excessive computations and memory demand involved. For many applications, including named entity recognition (NER), matching the state-of-the-art result under budget has attracted considerable attention. Drawing power from the recent advance in knowledge distillation (KD), this work presents a novel distillation scheme to efficiently transfer the knowledge learned from big models to their more affordable counterpart. Our solution highlights the construction of surrogate labels through the k-best Viterbi algorithm to distill knowledge from the teacher model. To maximally assimilate knowledge into the student model, we propose a multi-grained distillation scheme, which integrates cross entropy involved in conditional random field (CRF) and fuzzy learning.To validate the effectiveness of our proposal, we conducted a comprehensive evaluation on five NER benchmarks, reporting cross-the-board performance gains relative to competing prior-arts. We further discuss ablation results to dissect our gains.
References used
https://aclanthology.org/
Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utiliz
As a result of unstructured sentences and some misspellings and errors, finding named entities in a noisy environment such as social media takes much more effort. ParsTwiNER contains about 250k tokens, based on standard instructions like MUC-6 or CoN
Abstract We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition
Pretrained language models like BERT have advanced the state of the art for many NLP tasks. For resource-rich languages, one has the choice between a number of language-specific models, while multilingual models are also worth considering. These mode
Current work in named entity recognition (NER) shows that data augmentation techniques can produce more robust models. However, most existing techniques focus on augmenting in-domain data in low-resource scenarios where annotated data is quite limite