في دلالات معجمية، يتم علاج تجزئة الجملة الكاملة ووضع القطاع من الظواهر المختلفة بشكل عام بشكل منفصل، على الرغم من الترابط.نحن نفترض أن مهمة الاعتراف الدلالية المعتمدة الموحدة هي وسيلة فعالة لتغليف الأساليب التوضيحية سابقا من التوضيحية، بما في ذلك التعبير / التصنيف التعبير المتعدد الكلمات والعلامات الفائقة.باستخدام Streusle Corpus، نربط تسلسل CRF العصبي Tagger وتقييم أدائه على طول محاور مختلفة من التوضيحية.نظرا لأن مجموعة العلامات تعميم تعميم المهام السابقة (PARSEME، DIMSUM)، فإننا نتقييم بالإضافة إلى ذلك مدى جودة تعميم النموذج إلى مجموعات الاختبار هذه، وإيجاد أنها تقترب أو تجاوز النماذج الحالية على الرغم من التدريب فقط على Streusle.ينشئ عملنا أيضا نماذج أساسية ومقاييس التقييم لنمذجة متكاملة ودقيقة للدلالات المعجمية، مما يسهل العمل في المستقبل في هذا المجال.
In lexical semantics, full-sentence segmentation and segment labeling of various phenomena are generally treated separately, despite their interdependence. We hypothesize that a unified lexical semantic recognition task is an effective way to encapsulate previously disparate styles of annotation, including multiword expression identification / classification and supersense tagging. Using the STREUSLE corpus, we train a neural CRF sequence tagger and evaluate its performance along various axes of annotation. As the label set generalizes that of previous tasks (PARSEME, DiMSUM), we additionally evaluate how well the model generalizes to those test sets, finding that it approaches or surpasses existing models despite training only on STREUSLE. Our work also establishes baseline models and evaluation metrics for integrated and accurate modeling of lexical semantics, facilitating future work in this area.
References used
https://aclanthology.org/
This study proposes an utterance position-aware approach for a neural network-based dialogue act recognition (DAR) model, which incorporates positional encoding for utterance's absolute or relative position. The proposed approach is inspired by the o
This paper introduces Semantic Frame Forecast, a task that predicts the semantic frames that will occur in the next 10, 100, or even 1,000 sentences in a running story. Prior work focused on predicting the immediate future of a story, such as one to
The amount of information available online can be overwhelming for users to digest, specially when dealing with other users' comments when making a decision about buying a product or service. In this context, opinion summarization systems are of grea
Social media is notoriously difficult to process for existing natural language processing tools, because of spelling errors, non-standard words, shortenings, non-standard capitalization and punctuation. One method to circumvent these issues is to nor
Abstract We adopt an evolutionary view on language change in which cognitive factors (in addition to social ones) affect the fitness of words and their success in the linguistic ecosystem. Specifically, we propose a variety of psycholinguistic factor