Do you want to publish a course? Click here

CL-MoNoise: Cross-lingual Lexical Normalization

CL-Monoise: التطبيع المعجمي عبر اللغات

250   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Social media is notoriously difficult to process for existing natural language processing tools, because of spelling errors, non-standard words, shortenings, non-standard capitalization and punctuation. One method to circumvent these issues is to normalize input data before processing. Most previous work has focused on only one language, which is mostly English. In this paper, we are the first to propose a model for cross-lingual normalization, with which we participate in the WNUT 2021 shared task. To this end, we use MoNoise as a starting point, and make a simple adaptation for cross-lingual application. Our proposed model outperforms the leave-as-is baseline provided by the organizers which copies the input. Furthermore, we explore a completely different model which converts the task to a sequence labeling task. Performance of this second system is low, as it does not take capitalization into account in our implementation.

References used
https://aclanthology.org/
rate research

Read More

The task of converting a nonstandard text to a standard and readable text is known as lexical normalization. Almost all the Natural Language Processing (NLP) applications require the text data in normalized form to build quality task-specific models. Hence, lexical normalization has been proven to improve the performance of numerous natural language processing tasks on social media. This study aims to solve the problem of Lexical Normalization by formulating the Lexical Normalization task as a Sequence Labeling problem. This paper proposes a sequence labeling approach to solve the problem of Lexical Normalization in combination with the word-alignment technique. The goal is to use a single model to normalize text in various languages namely Croatian, Danish, Dutch, English, Indonesian-English, German, Italian, Serbian, Slovenian, Spanish, Turkish, and Turkish-German. This is a shared task in 2021 The 7th Workshop on Noisy User-generated Text (W-NUT)'' in which the participants are expected to create a system/model that performs lexical normalization, which is the translation of non-canonical texts into their canonical equivalents, comprising data from over 12 languages. The proposed single multilingual model achieves an overall ERR score of 43.75 on intrinsic evaluation and an overall Labeled Attachment Score (LAS) score of 63.12 on extrinsic evaluation. Further, the proposed method achieves the highest Error Reduction Rate (ERR) score of 61.33 among the participants in the shared task. This study highlights the effects of using additional training data to get better results as well as using a pre-trained Language model trained on multiple languages rather than only on one language.
Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for soci al media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MultiLexNorm shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 13 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system.
We present the winning entry to the Multilingual Lexical Normalization (MultiLexNorm) shared task at W-NUT 2021 (van der Goot et al., 2021a), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. We base our solut ion on a pre-trained byte-level language model, ByT5 (Xue et al., 2021a), which we further pre-train on synthetic data and then fine-tune on authentic normalization data. Our system achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. The source code is released at https://github.com/ufal/multilexnorm2021 and the fine-tuned models at https://huggingface.co/ufal.
Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model i s evaluated on another target language. While this works surprisingly well, substantial variance has been observed in target language performance between different fine-tuning runs, and in the zero-shot setup, no target-language development data is available to select among multiple fine-tuned models. Prior work has relied on English dev data to select among models that are fine-tuned with different learning rates, number of steps and other hyperparameters, often resulting in suboptimal choices. In this paper, we show that it is possible to select consistently better models when small amounts of annotated data are available in auxiliary pivot languages. We propose a machine learning approach to model selection that uses the fine-tuned model's own internal representations to predict its cross-lingual capabilities. In extensive experiments we find that this method consistently selects better models than English validation data across twenty five languages (including eight low-resource languages), and often achieves results that are comparable to model selection using target language development data.
How difficult is it for English-as-a-second language (ESL) learners to read noisy English texts? Do ESL learners need lexical normalization to read noisy English texts? These questions may also affect community formation on social networking sites wh ere differences can be attributed to ESL learners and native English speakers. However, few studies have addressed these questions. To this end, we built highly accurate readability assessors to evaluate the readability of texts for ESL learners. We then applied these assessors to noisy English texts to further assess the readability of the texts. The experimental results showed that although intermediate-level ESL learners can read most noisy English texts in the first place, lexical normalization significantly improves the readability of noisy English texts for ESL learners.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا