Do you want to publish a course? Click here

Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection

تحسين الإخلاص في تلخيص مبادرة مع توليد ومرشح التباين

239   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Despite significant progress in neural abstractive summarization, recent studies have shown that the current models are prone to generating summaries that are unfaithful to the original context. To address the issue, we study contrast candidate generation and selection as a model-agnostic post-processing technique to correct the extrinsic hallucinations (i.e. information not present in the source text) in unfaithful summaries. We learn a discriminative correction model by generating alternative candidate summaries where named entities and quantities in the generated summary are replaced with ones with compatible semantic types from the source document. This model is then used to select the best candidate as the final output summary. Our experiments and analysis across a number of neural summarization systems show that our proposed method is effective in identifying and correcting extrinsic hallucinations. We analyze the typical hallucination phenomenon by different types of neural summarization systems, in hope to provide insights for future work on the direction.



References used
https://aclanthology.org/
rate research

Read More

We study generating abstractive summaries that are faithful and factually consistent with the given articles. A novel contrastive learning formulation is presented, which leverages both reference summaries, as positive training data, and automaticall y generated erroneous summaries, as negative training data, to train summarization systems that are better at distinguishing between them. We further design four types of strategies for creating negative samples, to resemble errors made commonly by two state-of-the-art models, BART and PEGASUS, found in our new human annotations of summary errors. Experiments on XSum and CNN/Daily Mail show that our contrastive learning framework is robust across datasets and models. It consistently produces more factual summaries than strong comparisons with post error correction, entailment-based reranking, and unlikelihood training, according to QA-based factuality evaluation. Human judges echo the observation and find that our model summaries correct more errors.
Large scale pretrained models have demonstrated strong performances on several natural language generation and understanding benchmarks. However, introducing commonsense into them to generate more realistic text remains a challenge. Inspired from pre vious work on commonsense knowledge generation and generative commonsense reasoning, we introduce two methods to add commonsense reasoning skills and knowledge into abstractive summarization models. Both methods beat the baseline on ROUGE scores, demonstrating the superiority of our models over the baseline. Human evaluation results suggest that summaries generated by our methods are more realistic and have fewer commonsensical errors.
Modern summarization models generate highly fluent but often factually unreliable outputs. This motivated a surge of metrics attempting to measure the factuality of automatically generated summaries. Due to the lack of common benchmarks, these metric s cannot be compared. Moreover, all these methods treat factuality as a binary concept and fail to provide deeper insights on the kinds of inconsistencies made by different systems. To address these limitations, we devise a typology of factual errors and use it to collect human annotations of generated summaries from state-of-the-art summarization systems for the CNN/DM and XSum datasets. Through these annotations we identify the proportion of different categories of factual errors and benchmark factuality metrics, showing their correlation with human judgement as well as their specific strengths and weaknesses.
Repetition in natural language generation reduces the informativeness of text and makes it less appealing. Various techniques have been proposed to alleviate it. In this work, we explore and propose techniques to reduce repetition in abstractive summ arization. First, we explore the application of unlikelihood training and embedding matrix regularizers from previous work on language modeling to abstractive summarization. Next, we extend the coverage and temporal attention mechanisms to the token level to reduce repetition. In our experiments on the CNN/Daily Mail dataset, we observe that these techniques reduce the amount of repetition and increase the informativeness of the summaries, which we confirm via human evaluation.
In this paper, we study the abstractive sentence summarization. There are two essential information features that can influence the quality of news summarization, which are topic keywords and the knowledge structure of the news text. Besides, the exi sting knowledge encoder has poor performance on sparse sentence knowledge structure. Considering these, we propose KAS, a novel Knowledge and Keywords Augmented Abstractive Sentence Summarization framework. Tri-encoders are utilized to integrate contexts of original text, knowledge structure and keywords topic simultaneously, with a special linearized knowledge structure. Automatic and human evaluations demonstrate that KAS achieves the best performances.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا