Do you want to publish a course? Click here

Low-Complexity Probing via Finding Subnetworks

التحقيق المنخفض التعقيد عبر العثور على الشبكات الفرعية

276   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The dominant approach in probing neural networks for linguistic properties is to train a new shallow multi-layer perceptron (MLP) on top of the model's internal representations. This approach can detect properties encoded in the model, but at the cost of adding new parameters that may learn the task directly. We instead propose a subtractive pruning-based probe, where we find an existing subnetwork that performs the linguistic task of interest. Compared to an MLP, the subnetwork probe achieves both higher accuracy on pre-trained models and lower accuracy on random models, so it is both better at finding properties of interest and worse at learning on its own. Next, by varying the complexity of each probe, we show that subnetwork probing Pareto-dominates MLP probing in that it achieves higher accuracy given any budget of probe complexity. Finally, we analyze the resulting subnetworks across various tasks to locate where each task is encoded, and we find that lower-level tasks are captured in lower layers, reproducing similar findings in past work.



References used
https://aclanthology.org/
rate research

Read More

Sentence embeddings encode information relating to the usage of idioms in a sentence. This paper reports a set of experiments that combine a probing methodology with input masking to analyse where in a sentence this idiomatic information is taken fro m, and what form it takes. Our results indicate that BERT's idiomatic key is primarily found within an idiomatic expression, but also draws on information from the surrounding context. Also, BERT can distinguish between the disruption in a sentence caused by words missing and the incongruity caused by idiomatic usage.
Models of language trained on very large corpora have been demonstrated useful for natural language processing. As fixed artifacts, they have become the object of intense study, with many researchers probing'' the extent to which they acquire and rea dily demonstrate linguistic abstractions, factual and commonsense knowledge, and reasoning abilities. Recent work applied several probes to intermediate training stages to observe the developmental process of a large-scale model (Chiang et al., 2020). Following this effort, we systematically answer a question: for various types of knowledge a language model learns, when during (pre)training are they acquired? Using RoBERTa as a case study, we find: linguistic knowledge is acquired fast, stably, and robustly across domains. Facts and commonsense are slower and more domain-sensitive. Reasoning abilities are, in general, not stably acquired. As new datasets, pretraining protocols, and probes emerge, we believe that probing-across-time analyses can help researchers understand the complex, intermingled learning that these models undergo and guide us toward more efficient approaches that accomplish necessary learning faster.
Scholarly documents have a great degree of variation, both in terms of content (semantics) and structure (pragmatics). Prior work in scholarly document understanding emphasizes semantics through document summarization and corpus topic modeling but te nds to omit pragmatics such as document organization and flow. Using a corpus of scholarly documents across 19 disciplines and state-of-the-art language modeling techniques, we learn a fixed set of domain-agnostic descriptors for document sections and retrofit'' the corpus to these descriptors (also referred to as normalization''). Then, we analyze the position and ordering of these descriptors across documents to understand the relationship between discipline and structure. We report within-discipline structural archetypes, variability, and between-discipline comparisons, supporting the hypothesis that scholarly communities, despite their size, diversity, and breadth, share similar avenues for expressing their work. Our findings lay the foundation for future work in assessing research quality, domain style transfer, and further pragmatic analysis.
Human evaluation for summarization tasks is reliable but brings in issues of reproducibility and high costs. Automatic metrics are cheap and reproducible but sometimes poorly correlated with human judgment. In this work, we propose flexible semiautom atic to automatic summary evaluation metrics, following the Pyramid human evaluation method. Semi-automatic Lite2Pyramid retains the reusable human-labeled Summary Content Units (SCUs) for reference(s) but replaces the manual work of judging SCUs' presence in system summaries with a natural language inference (NLI) model. Fully automatic Lite3Pyramid further substitutes SCUs with automatically extracted Semantic Triplet Units (STUs) via a semantic role labeling (SRL) model. Finally, we propose in-between metrics, Lite2.xPyramid, where we use a simple regressor to predict how well the STUs can simulate SCUs and retain SCUs that are more difficult to simulate, which provides a smooth transition and balance between automation and manual evaluation. Comparing to 15 existing metrics, we evaluate human-metric correlations on 3 existing meta-evaluation datasets and our newly collected PyrXSum (with 100/10 XSum examples/systems). It shows that Lite2Pyramid consistently has the best summary-level correlations; Lite3Pyramid works better than or comparable to other automatic metrics; Lite2.xPyramid trades off small correlation drops for larger manual effort reduction, which can reduce costs for future data collection.
The complexity loss paradox, which posits that individuals suffering from disease exhibit surprisingly predictable behavioral dynamics, has been observed in a variety of both human and animal physiological systems. The recent advent of online text-ba sed therapy presents a new opportunity to analyze the complexity loss paradox in a novel operationalization: linguistic complexity loss in text-based therapy conversations. In this paper, we analyze linguistic complexity correlates of mental health in the online therapy messages sent between therapists and 7,170 clients who provided 30,437 corresponding survey responses on their anxiety. We found that when clients reported more anxiety, they showed reduced lexical diversity as estimated by the moving average type-token ratio. Therapists, on the other hand, used language of higher reading difficulty, syntactic complexity, and age of acquisition when clients were more anxious. Finally, we found that clients, and to an even greater extent, therapists, exhibited consistent levels of many linguistic complexity measures. These results demonstrate how linguistic analysis of text-based communication can be leveraged as a marker for anxiety, an exciting prospect in a time of both increased online communication and increased mental health issues.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا