تتمثل النهج المهيمن في التحقيق في الشبكات العصبية للعقارات اللغوية في تدريب Perceptron متعدد الطبقات الضحلة (MLP) على رأس التمثيلات الداخلية للنموذج. يمكن لهذا النهج اكتشاف الخصائص المشفرة في النموذج، ولكن بتكلفة إضافة معلمات جديدة قد تتعلم المهمة مباشرة. نقترح بدلا من ذلك، حيث نقترح مسبارا شبه جذاب، حيث نجد شبكة فرعية حالية تؤدي المهمة اللغوية المصالحة. بالمقارنة مع MLP، تحقق مسبار الشبكة الفرعية كلتا الدقة العليا على النماذج المدربة مسبقا ودقة منخفضة على النماذج العشوائية، لذلك فهي أفضل في العثور على خصائص ذات أهمية وأسوأ من التعلم بمفردها. بعد ذلك، من خلال اختلاف تعقيد كل مسبار، نوضح أن التحقيق في الشبكة الفرعية التي يسيطر عليها البريتو - يحقق في تحقيق الدقة العليا التي تحقق أي ميزانية تعقيد التحقيق. أخيرا، نقوم بتحليل شبكات فرعية الناتجة الناتجة في مختلف المهام لتحديد مكان ترميز كل مهمة، ونتجد أن المهام ذات المستوى الأدنى يتم التقاطها في طبقات أقل، إعادة إنتاج نتائج مماثلة في العمل الماضي.
The dominant approach in probing neural networks for linguistic properties is to train a new shallow multi-layer perceptron (MLP) on top of the model's internal representations. This approach can detect properties encoded in the model, but at the cost of adding new parameters that may learn the task directly. We instead propose a subtractive pruning-based probe, where we find an existing subnetwork that performs the linguistic task of interest. Compared to an MLP, the subnetwork probe achieves both higher accuracy on pre-trained models and lower accuracy on random models, so it is both better at finding properties of interest and worse at learning on its own. Next, by varying the complexity of each probe, we show that subnetwork probing Pareto-dominates MLP probing in that it achieves higher accuracy given any budget of probe complexity. Finally, we analyze the resulting subnetworks across various tasks to locate where each task is encoded, and we find that lower-level tasks are captured in lower layers, reproducing similar findings in past work.
References used
https://aclanthology.org/
Sentence embeddings encode information relating to the usage of idioms in a sentence. This paper reports a set of experiments that combine a probing methodology with input masking to analyse where in a sentence this idiomatic information is taken fro
Models of language trained on very large corpora have been demonstrated useful for natural language processing. As fixed artifacts, they have become the object of intense study, with many researchers probing'' the extent to which they acquire and rea
Scholarly documents have a great degree of variation, both in terms of content (semantics) and structure (pragmatics). Prior work in scholarly document understanding emphasizes semantics through document summarization and corpus topic modeling but te
Human evaluation for summarization tasks is reliable but brings in issues of reproducibility and high costs. Automatic metrics are cheap and reproducible but sometimes poorly correlated with human judgment. In this work, we propose flexible semiautom
The complexity loss paradox, which posits that individuals suffering from disease exhibit surprisingly predictable behavioral dynamics, has been observed in a variety of both human and animal physiological systems. The recent advent of online text-ba