Do you want to publish a course? Click here

Linguistic Complexity Loss in Text-Based Therapy

فقدان التعقيد اللغوي في العلاج القائم على النص

340   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The complexity loss paradox, which posits that individuals suffering from disease exhibit surprisingly predictable behavioral dynamics, has been observed in a variety of both human and animal physiological systems. The recent advent of online text-based therapy presents a new opportunity to analyze the complexity loss paradox in a novel operationalization: linguistic complexity loss in text-based therapy conversations. In this paper, we analyze linguistic complexity correlates of mental health in the online therapy messages sent between therapists and 7,170 clients who provided 30,437 corresponding survey responses on their anxiety. We found that when clients reported more anxiety, they showed reduced lexical diversity as estimated by the moving average type-token ratio. Therapists, on the other hand, used language of higher reading difficulty, syntactic complexity, and age of acquisition when clients were more anxious. Finally, we found that clients, and to an even greater extent, therapists, exhibited consistent levels of many linguistic complexity measures. These results demonstrate how linguistic analysis of text-based communication can be leveraged as a marker for anxiety, an exciting prospect in a time of both increased online communication and increased mental health issues.



References used
https://aclanthology.org/
rate research

Read More

In Arabic Language, diacritics are used to specify meanings as well as pronunciations. However, diacritics are often omitted from written texts, which increases the number of possible meanings and pronunciations. This leads to an ambiguous text and m akes the computational process on undiacritized text more difficult. In this paper, we propose a Linguistic Attentional Model for Arabic text Diacritization (LAMAD). In LAMAD, a new linguistic feature representation is presented, which utilizes both word and character contextual features. Then, a linguistic attention mechanism is proposed to capture the important linguistic features. In addition, we explore the impact of the linguistic features extracted from the text on Arabic text diacritization (ATD) by introducing them to the linguistic attention mechanism. The extensive experimental results on three datasets with different sizes illustrate that LAMAD outperforms the existing state-of-the-art models.
Continual learning has become increasingly important as it enables NLP models to constantly learn and gain knowledge over time. Previous continual learning methods are mainly designed to preserve knowledge from previous tasks, without much emphasis o n how to well generalize models to new tasks. In this work, we propose an information disentanglement based regularization method for continual learning on text classification. Our proposed method first disentangles text hidden spaces into representations that are generic to all tasks and representations specific to each individual task, and further regularizes these representations differently to better constrain the knowledge required to generalize. We also introduce two simple auxiliary tasks: next sentence prediction and task-id prediction, for learning better generic and specific representation spaces. Experiments conducted on large-scale benchmarks demonstrate the effectiveness of our method in continual text classification tasks with various sequences and lengths over state-of-the-art baselines. We have publicly released our code at https://github.com/GT-SALT/IDBR.
The main contribution of this paper is to fine-tune transformer-based language models pre-trained on several text corpora, some being general (E.g., Wikipedia, BooksCorpus), some being the corpora from which the CompLex Dataset was extracted, and oth ers being from other specific domains such as Finance, Law, etc. We perform ablation studies on selecting the transformer models and how their individual complexity scores are aggregated to get the resulting complexity scores. Our method achieves a best Pearson Correlation of 0.784 in sub-task 1 (single word) and 0.836 in sub-task 2 (multiple word expressions).
Advancements within the field of text simplification (TS) have primarily been within syntactic or lexical simplification. However, conceptual simplification has previously been identified as another field of TS that has the potential to significantly improve reading comprehension. A first step to measuring conceptual simplification is the classification of concepts as either complex or simple. This research-in-progress paper proposes a new definition of conceptual complexity alongside a simple machine-learning approach that performs a binary classification task to distinguish between simple and complex concepts. It is proposed that this be a first step when developing new text simplification models that operate on a conceptual level.
In cross-lingual text classification, it is required that task-specific training data in high-resource source languages are available, where the task is identical to that of a low-resource target language. However, collecting such training data can b e infeasible because of the labeling cost, task characteristics, and privacy concerns. This paper proposes an alternative solution that uses only task-independent word embeddings of high-resource languages and bilingual dictionaries. First, we construct a dictionary-based heterogeneous graph (DHG) from bilingual dictionaries. This opens the possibility to use graph neural networks for cross-lingual transfer. The remaining challenge is the heterogeneity of DHG because multiple languages are considered. To address this challenge, we propose dictionary-based heterogeneous graph neural network (DHGNet) that effectively handles the heterogeneity of DHG by two-step aggregations, which are word-level and language-level aggregations. Experimental results demonstrate that our method outperforms pretrained models even though it does not access to large corpora. Furthermore, it can perform well even though dictionaries contain many incorrect translations. Its robustness allows the usage of a wider range of dictionaries such as an automatically constructed dictionary and crowdsourced dictionary, which are convenient for real-world applications.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا