إن انفجار مقالات أخبار الصحة عبر الإنترنت يدير مخاطر انتشار المعلومات ذات الجودة المنخفضة.ضمن العمل الحالي بشأن فحص الحقائق، ومع ذلك، فقد تم إيلاء اهتمام كبير نسبيا للأخبار الطبية.نقدم مهمة تصنيف الأخبار الصحية لتحديد ما إذا كانت المواد الإخبارية الطبية تلبي مجموعة من معايير المراجعة التي تعتبرها خبراء طبي وصحفيون الرعاية الصحية.نقدم مجموعة بيانات من 1،119 أخبار الصحة المقترنة مراجعات منهجية.تتكون معايير المراجعة من ستة عناصر ضرورية لدقة الأخبار الطبية.بعد ذلك، نقدم تجارب تقارن النهج الكلاسيكي القائم على الرمز المكون من النماذج القائمة على المحولات.تظهر نتائجنا أن الكشف عن الهفوات النوعية هي مهمة صعبة مع التداعيات المباشرة في المعلومات الخاطئة، ولكنها اتجاه مهم لمتابعة ما بعد تخصيص الملصقات الحقيقية أو المزيفة إلى مطالبات قصيرة.
The explosion of online health news articles runs the risk of the proliferation of low-quality information. Within the existing work on fact-checking, however, relatively little attention has been paid to medical news. We present a health news classification task to determine whether medical news articles satisfy a set of review criteria deemed important by medical experts and health care journalists. We present a dataset of 1,119 health news paired with systematic reviews. The review criteria consist of six elements that are essential to the accuracy of medical news. We then present experiments comparing the classical token-based approach with the more recent transformer-based models. Our results show that detecting qualitative lapses is a challenging task with direct ramifications in misinformation, but is an important direction to pursue beyond assigning True or False labels to short claims.
References used
https://aclanthology.org/
In this paper, we introduce UnifiedM2, a general-purpose misinformation model that jointly models multiple domains of misinformation with a single, unified setup. The model is trained to handle four tasks: detecting news bias, clickbait, fake news, a
Irrespective of the success of the deep learning-based mixed-domain transfer learning approach for solving various Natural Language Processing tasks, it does not lend a generalizable solution for detecting misinformation from COVID-19 social media da
This study was conducted in all health centers that provide vaccine services of
Latakia city, on a sample of all the nurses who provide the vaccination for children in
health centers , their number (27) nurse, and all the parents of children audito
The spread of COVID-19 has been accompanied with widespread misinformation on social media. In particular, Twitterverse has seen a huge increase in dissemination of distorted facts and figures. The present work aims at identifying tweets regarding CO
In this paper we introduce ArCOV19-Rumors, an Arabic COVID-19 Twitter dataset for misinformation detection composed of tweets containing claims from 27th January till the end of April 2020. We collected 138 verified claims, mostly from popular fact-c