Do you want to publish a course? Click here

Navigating the Kaleidoscope of COVID-19 Misinformation Using Deep Learning

التنقل مع مشهد من CovID-19 المعلومات الخاطئة باستخدام التعلم العميق

512   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Irrespective of the success of the deep learning-based mixed-domain transfer learning approach for solving various Natural Language Processing tasks, it does not lend a generalizable solution for detecting misinformation from COVID-19 social media data. Due to the inherent complexity of this type of data, caused by its dynamic (context evolves rapidly), nuanced (misinformation types are often ambiguous), and diverse (skewed, fine-grained, and overlapping categories) nature, it is imperative for an effective model to capture both the local and global context of the target domain. By conducting a systematic investigation, we show that: (i) the deep Transformer-based pre-trained models, utilized via the mixed-domain transfer learning, are only good at capturing the local context, thus exhibits poor generalization, and (ii) a combination of shallow network-based domain-specific models and convolutional neural networks can efficiently extract local as well as global context directly from the target data in a hierarchical fashion, enabling it to offer a more generalizable solution.



References used
https://aclanthology.org/
rate research

Read More

The spread of COVID-19 has been accompanied with widespread misinformation on social media. In particular, Twitterverse has seen a huge increase in dissemination of distorted facts and figures. The present work aims at identifying tweets regarding CO VID-19 which contains harmful and false information. We have experimented with a number of Deep Learning-based models, including different word embeddings, such as Glove, ELMo, among others. BERTweet model achieved the best overall F1-score of 0.881 and secured the third rank on the above task.
We present machine learning classifiers to automatically identify COVID-19 misinformation on social media in three languages: English, Bulgarian, and Arabic. We compared 4 multitask learning models for this task and found that a model trained with En glish BERT achieves the best results for English, and multilingual BERT achieves the best results for Bulgarian and Arabic. We experimented with zero shot, few shot, and target-only conditions to evaluate the impact of target-language training data on classifier performance, and to understand the capabilities of different models to generalize across languages in detecting misinformation online. This work was performed as a submission to the shared task, NLP4IF 2021: Fighting the COVID-19 Infodemic. Our best models achieved the second best evaluation test results for Bulgarian and Arabic among all the participating teams and obtained competitive scores for English.
In this paper we introduce ArCOV19-Rumors, an Arabic COVID-19 Twitter dataset for misinformation detection composed of tweets containing claims from 27th January till the end of April 2020. We collected 138 verified claims, mostly from popular fact-c hecking websites, and identified 9.4K relevant tweets to those claims. Tweets were manually-annotated by veracity to support research on misinformation detection, which is one of the major problems faced during a pandemic. ArCOV19-Rumors supports two levels of misinformation detection over Twitter: verifying free-text claims (called claim-level verification) and verifying claims expressed in tweets (called tweet-level verification). Our dataset covers, in addition to health, claims related to other topical categories that were influenced by COVID-19, namely, social, politics, sports, entertainment, and religious. Moreover, we present benchmarking results for tweet-level verification on the dataset. We experimented with SOTA models of versatile approaches that either exploit content, user profiles features, temporal features and propagation structure of the conversational threads for tweet verification.
In this paper, we present ArCOV-19, an Arabic COVID-19 Twitter dataset that spans one year, covering the period from 27th of January 2020 till 31st of January 2021. ArCOV-19 is the first publicly-available Arabic Twitter dataset covering COVID-19 pan demic that includes about 2.7M tweets alongside the propagation networks of the most-popular subset of them (i.e., most-retweeted and -liked). The propagation networks include both retweetsand conversational threads (i.e., threads of replies). ArCOV-19 is designed to enable research under several domains including natural language processing, information retrieval, and social computing. Preliminary analysis shows that ArCOV-19 captures rising discussions associated with the first reported cases of the disease as they appeared in the Arab world.In addition to the source tweets and the propagation networks, we also release the search queries and the language-independent crawler used to collect the tweets to encourage the curation of similar datasets.
In this paper, we describe our system for the shared task on Fighting the COVID-19 Infodemic in the English Language. Our proposed architecture consists of a multi-output classification model for the seven tasks, with a task-wise multi-head attention layer for inter-task information aggregation. This was built on top of the Bidirectional Encoder Representations obtained from the RoBERTa Transformer. We were able to achieve a mean F1 score of 0.891 on the test data, leading us to the second position on the test-set leaderboard.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا