Do you want to publish a course? Click here

Domain-Specific Japanese ELECTRA Model Using a Small Corpus

نموذج Electra خاص بالهيكلية باستخدام كوربوس صغير

278   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Recently, domain shift, which affects accuracy due to differences in data between source and target domains, has become a serious issue when using machine learning methods to solve natural language processing tasks. With additional pretraining and fine-tuning using a target domain corpus, pretraining models such as BERT (Bidirectional Encoder Representations from Transformers) can address this issue. However, the additional pretraining of the BERT model is difficult because it requires significant computing resources. The efficiently learning an encoder that classifies token replacements accurately (ELECTRA) pretraining model replaces the BERT pretraining method's masked language modeling with a method called replaced token detection, which improves the computational efficiency and allows the additional pretraining of the model to a practical extent. Herein, we propose a method for addressing the computational efficiency of pretraining models in domain shift by constructing an ELECTRA pretraining model on a Japanese dataset and additional pretraining this model in a downstream task using a corpus from the target domain. We constructed a pretraining model for ELECTRA in Japanese and conducted experiments on a document classification task using data from Japanese news articles. Results show that even a model smaller than the pretrained model performs equally well.



References used
https://aclanthology.org/
rate research

Read More

Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pre-training cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models.
The present study is an ongoing research that aims to investigate lexico-grammatical and stylistic features of texts in the environmental domain in English, their implications for translation into Ukrainian as well as the translation of key terminological units based on a specialised parallel and comparable corpora.
This paper describes the construction of a new large-scale English-Japanese Simultaneous Interpretation (SI) corpus and presents the results of its analysis. A portion of the corpus contains SI data from three interpreters with different amounts of e xperience. Some of the SI data were manually aligned with the source speeches at the sentence level. Their latency, quality, and word order aspects were compared among the SI data themselves as well as against offline translations. The results showed that (1) interpreters with more experience controlled the latency and quality better, and (2) large latency hurt the SI quality.
In this paper, we present a novel approachfor domain adaptation in Neural MachineTranslation which aims to improve thetranslation quality over a new domain.Adapting new domains is a highly challeng-ing task for Neural Machine Translation onlimited da ta, it becomes even more diffi-cult for technical domains such as Chem-istry and Artificial Intelligence due to spe-cific terminology, etc. We propose DomainSpecific Back Translation method whichuses available monolingual data and gen-erates synthetic data in a different way.This approach uses Out Of Domain words.The approach is very generic and can beapplied to any language pair for any domain. We conduct our experiments onChemistry and Artificial Intelligence do-mains for Hindi and Telugu in both direc-tions. It has been observed that the usageof synthetic data created by the proposedalgorithm improves the BLEU scores significantly.
This article describes research on claim verification carried out using a multiple GAN-based model. The proposed model consists of three pairs of generators and discriminators. The generator and discriminator pairs are responsible for generating synt hetic data for supported and refuted claims and claim labels. A theoretical discussion about the proposed model is provided to validate the equilibrium state of the model. The proposed model is applied to the FEVER dataset, and a pre-trained language model is used for the input text data. The synthetically generated data helps to gain information that improves classification performance over state of the art baselines. The respective F1 scores after applying the proposed method on FEVER 1.0 and FEVER 2.0 datasets are 0.65+-0.018 and 0.65+-0.051.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا