Do you want to publish a course? Click here

ITNLP at SemEval-2021 Task 11: Boosting BERT with Sampling and Adversarial Training for Knowledge Extraction

ITNLP في مهمة Semeval-2021 11: تعزيز برت مع أخذ العينات والتدريب الخصم لاستخراج المعرفة

208   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes the winning system in the End-to-end Pipeline phase for the NLPContributionGraph task. The system is composed of three BERT-based models and the three models are used to extract sentences, entities and triples respectively. Experiments show that sampling and adversarial training can greatly boost the system. In End-to-end Pipeline phase, our system got an average F1 of 0.4703, significantly higher than the second-placed system which got an average F1 of 0.3828.



References used
https://aclanthology.org/
rate research

Read More

This paper describes the Duluth system that participated in SemEval-2021 Task 11, NLP Contribution Graph. It details the extraction of contribution sentences and scientific entities and their relations from scholarly articles in the domain of Natural Language Processing. Our solution uses deBERTa for multi-class sentence classification to extract the contributing sentences and their type, and dependency parsing to outline each sentence and extract subject-predicate-object triples. Our system ranked fifth of seven for Phase 1: end-to-end pipeline, sixth of eight for Phase 2 Part 1: phrases and triples, and fifth of eight for Phase 2 Part 2: triples extraction.
Research in Natural Language Processing is making rapid advances, resulting in the publication of a large number of research papers. Finding relevant research papers and their contribution to the domain is a challenging problem. In this paper, we add ress this challenge via the SemEval 2021 Task 11: NLPContributionGraph, by developing a system for a research paper contributions-focused knowledge graph over Natural Language Processing literature. The task is divided into three sub-tasks: extracting contribution sentences that show important contributions in the research article, extracting phrases from the contribution sentences, and predicting the information units in the research article together with triplet formation from the phrases. The proposed system is agnostic to the subject domain and can be applied for building a knowledge graph for any area. We found that transformer-based language models can significantly improve existing techniques and utilized the SciBERT-based model. Our first sub-task uses Bidirectional LSTM (BiLSTM) stacked on top of SciBERT model layers, while the second sub-task uses Conditional Random Field (CRF) on top of SciBERT with BiLSTM. The third sub-task uses a combined SciBERT based neural approach with heuristics for information unit prediction and triplet formation from the phrases. Our system achieved F1 score of 0.38, 0.63 and 0.76 in end-to-end pipeline testing, phrase extraction testing and triplet extraction testing respectively.
This paper presents our endeavor for solving task11, NLPContributionGraph, of SemEval-2021. The purpose of the task was to extract triples from a paper in the Nature Language Processing field for constructing an Open Research Knowledge Graph. The tas k includes three sub-tasks: detecting the contribution sentences in papers, identifying scientific terms and predicate phrases from the contribution sentences; and inferring triples in the form of (subject, predicate, object) as statements for Knowledge Graph building. In this paper, we apply an ensemble of various fine-tuned pre-trained language models (PLM) for tasks one and two. In addition, self-training methods are adopted for tackling the shortage of annotated data. For the third task, rather than using classic neural open information extraction (OIE) architectures, we generate potential triples via manually designed rules and develop a binary classifier to differentiate positive ones from others. The quantitative results show that we obtain the 4th, 2nd, and 2nd rank in three evaluation phases.
This paper describes the system we built as the YNU-HPCC team in the SemEval-2021 Task 11: NLPContributionGraph. This task involves first identifying sentences in the given natural language processing (NLP) scholarly articles that reflect research co ntributions through binary classification; then identifying the core scientific terms and their relation phrases from these contribution sentences by sequence labeling; and finally, these scientific terms and relation phrases are categorized, identified, and organized into subject-predicate-object triples to form a knowledge graph with the help of multiclass classification and multi-label classification. We developed a system for this task using a pre-trained language representation model called BERT that stands for Bidirectional Encoder Representations from Transformers, and achieved good results. The average F1-score for Evaluation Phase 2, Part 1 was 0.4562 and ranked 7th, and the average F1-score for Evaluation Phase 2, Part 2 was 0.6541, and also ranked 7th.
We experiment with XLM RoBERTa for Word in Context Disambiguation in the Multi Lingual and Cross Lingual setting so as to develop a single model having knowledge about both settings. We solve the problem as a binary classification problem and also ex periment with data augmentation and adversarial training techniques. In addition, we also experiment with a 2-stage training technique. Our approaches prove to be beneficial for better performance and robustness.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا