تصف هذه الورقة نظام Duluth الذي شارك في مهمة Semeval-2021 11، الرسم البياني للمساهمة NLP.وتفصل في استخراج جمل المساهمة والكيانات العلمية وعلاقاتها من المقالات العلمية في مجال معالجة اللغة الطبيعية.يستخدم حلنا Deberta لتصنيف الجملة المتعدد الفوضى لاستخراج الجمل المساهمة ونوعها، وتحليل التبعية لتحديد كل جملة واستخراج ثلاثة أضعاف ثلاثة أضعاف.احتل نظامنا في المرتبة الخامسة من السبعة للمرحلة الأولى: خط أنابيب نهاية إلى نهاية، السادس من ثمانية للمرحلة 2 الجزء الأول: العبارات والثمانية، والخامس الثمانية للمرحلة 2 الجزء 2: استخراج ثلاثي.
This paper describes the Duluth system that participated in SemEval-2021 Task 11, NLP Contribution Graph. It details the extraction of contribution sentences and scientific entities and their relations from scholarly articles in the domain of Natural Language Processing. Our solution uses deBERTa for multi-class sentence classification to extract the contributing sentences and their type, and dependency parsing to outline each sentence and extract subject-predicate-object triples. Our system ranked fifth of seven for Phase 1: end-to-end pipeline, sixth of eight for Phase 2 Part 1: phrases and triples, and fifth of eight for Phase 2 Part 2: triples extraction.
References used
https://aclanthology.org/
This paper describes the winning system in the End-to-end Pipeline phase for the NLPContributionGraph task. The system is composed of three BERT-based models and the three models are used to extract sentences, entities and triples respectively. Exper
MeasEval aims at identifying quantities along with the entities that are measured with additional properties within English scientific documents. The variety of styles used makes measurements, a most crucial aspect of scientific writing, challenging
This paper presents our endeavor for solving task11, NLPContributionGraph, of SemEval-2021. The purpose of the task was to extract triples from a paper in the Nature Language Processing field for constructing an Open Research Knowledge Graph. The tas
This paper presents the system for SemEval 2021 Task 8 (MeasEval). MeasEval is a novel span extraction, classification, and relation extraction task focused on finding quantities, attributes of these quantities, and additional information, including
We propose a cascade of neural models that performs sentence classification, phrase recognition, and triple extraction to automatically structure the scholarly contributions of NLP publications. To identify the most important contribution sentences i