يبذل الأبحاث في معالجة اللغة الطبيعية تطورات سريعة، مما يؤدي إلى نشر عدد كبير من الأوراق البحثية. العثور على أوراق بحثية ذات صلة ومساهمتها في المجال هي مشكلة صعبة. في هذه الورقة، نتعلم هذا التحدي عبر مهمة Semeval 2021 11: NLPConTributiongraph، من خلال تطوير نظام للحصول على الرسم البياني المعرفة المركزة للصفحة البحثية على أدب معالجة اللغة الطبيعية. تنقسم المهمة إلى ثلاث مهام فرعية: استخراج جمل المساهمة التي توضح مساهمات مهمة في المادة البحثية، واستخراج العبارات من أحكام المساهمة، والتنبؤ بالوحدات الإعلامية في المادة البحثية مع تكوين ثلاثي الأمراض من العبارات. النظام المقترح غير ملائم إلى مجال الموضوع ويمكن تطبيقه لبناء رسم بياني للمعرفة لأي منطقة. وجدنا أن نماذج اللغة القائمة على المحولات يمكن أن تحسن بشكل كبير التقنيات الحالية واستخدام النموذج المستند إلى Scibert. تستخدم المهمة الفرعية الأولى لدينا ثنائي الاتجاه LSTM (Bilstm) مكدسة أعلى طبقات نموذج Scibert، في حين أن المهمة الفرعية الثانية تستخدم مجال عشوائي مشروط (CRF) على رأس Scibert مع Bilstm. تستخدم المهمة الفرعية الثالثة نهجا عصبي مجتمعة مقرها مع الاستدلال لتنبؤ وحدة المعلومات وتشكيل ثلاثي الزيارة من العبارات. حقق نظامنا درجة F1 من 0.38، 0.63 و 0.76 في اختبار خط أنابيب نهاية إلى نهاية، اختبار استخراج العبارات واختبار استخراج ثلاث مرات.
Research in Natural Language Processing is making rapid advances, resulting in the publication of a large number of research papers. Finding relevant research papers and their contribution to the domain is a challenging problem. In this paper, we address this challenge via the SemEval 2021 Task 11: NLPContributionGraph, by developing a system for a research paper contributions-focused knowledge graph over Natural Language Processing literature. The task is divided into three sub-tasks: extracting contribution sentences that show important contributions in the research article, extracting phrases from the contribution sentences, and predicting the information units in the research article together with triplet formation from the phrases. The proposed system is agnostic to the subject domain and can be applied for building a knowledge graph for any area. We found that transformer-based language models can significantly improve existing techniques and utilized the SciBERT-based model. Our first sub-task uses Bidirectional LSTM (BiLSTM) stacked on top of SciBERT model layers, while the second sub-task uses Conditional Random Field (CRF) on top of SciBERT with BiLSTM. The third sub-task uses a combined SciBERT based neural approach with heuristics for information unit prediction and triplet formation from the phrases. Our system achieved F1 score of 0.38, 0.63 and 0.76 in end-to-end pipeline testing, phrase extraction testing and triplet extraction testing respectively.
References used
https://aclanthology.org/
We propose a cascade of neural models that performs sentence classification, phrase recognition, and triple extraction to automatically structure the scholarly contributions of NLP publications. To identify the most important contribution sentences i
This paper describes the winning system in the End-to-end Pipeline phase for the NLPContributionGraph task. The system is composed of three BERT-based models and the three models are used to extract sentences, entities and triples respectively. Exper
In this work, we present our approach and findings for SemEval-2021 Task 5 - Toxic Spans Detection. The task's main aim was to identify spans to which a given text's toxicity could be attributed. The task is challenging mainly due to two constraints:
This paper describes our contribution to SemEval 2021 Task 1 (Shardlow et al., 2021): Lexical Complexity Prediction. In our approach, we leverage the ELECTRA model and attempt to mirror the data annotation scheme. Although the task is a regression ta
Recently, there has been an interest in the research on factual verification and prediction over structured data like tables and graphs. To circumvent any false news incident, it is necessary to not only model and predict over structured data efficie