نحن نقدم متعلما فونوتياكيا بسيطا وعالي للغاية يقوم بتحفيز شركة Automaton المحدودة المحدودة من بيانات نموذج Word.نحن تصف المتعلم وإظهار كيفية قيامه بتحديده للحث على اللغات العادية غير المقيدة، وكذلك كيفية تقييدها إلى بعض الفصول الدراسية غير النظامية مثل لغات K-Local K-Local و K- الدقيقة.نقيم المتعلم في قدرته على تعلم القيود الشوئية في أمثلة اللعبة وفي مجموعات بيانات Quechua و Navajo.نجد أن المتعلم غير المقيد هو الأكثر دقة بشكل عام عند النمذجة أشكال تشهد في التدريب؛ومع ذلك، فإن المتعلم الذي يقتصر فقط على فئة اللغة بالعرق الصارم يلتقط بنجاح بعض القيود الفونية غير المخاطية.يخدم المتعلم لدينا كأساس أساليب أكثر تطورا.
We introduce a simple and highly general phonotactic learner which induces a probabilistic finite-state automaton from word-form data. We describe the learner and show how to parameterize it to induce unrestricted regular languages, as well as how to restrict it to certain subregular classes such as Strictly k-Local and Strictly k-Piecewise languages. We evaluate the learner on its ability to learn phonotactic constraints in toy examples and in datasets of Quechua and Navajo. We find that an unrestricted learner is the most accurate overall when modeling attested forms not seen in training; however, only the learner restricted to the Strictly Piecewise language class successfully captures certain nonlocal phonotactic constraints. Our learner serves as a baseline for more sophisticated methods.
References used
https://aclanthology.org/
Shupamem, a language of Western Cameroon, is a tonal language which also exhibits the morpho-phonological process of full reduplication. This creates two challenges for finite-state model of its morpho-syntax and morphophonology: how to manage the fu
Total reduplication is common in natural language phonology and morphology. However, formally as copying on reduplicants of unbounded size, unrestricted total reduplication requires computational power beyond context-free, while other phonological an
In this work, we propose a novel framework, Gradient Aligned Mutual Learning BERT (GAML-BERT), for improving the early exiting of BERT. GAML-BERT's contributions are two-fold. We conduct a set of pilot experiments, which shows that mutual knowledge d
Neural abstractive summarization systems have gained significant progress in recent years. However, abstractive summarization often produce inconsisitent statements or false facts. How to automatically generate highly abstract yet factually correct s
Traditionally, character-level transduction problems have been solved with finite-state models designed to encode structural and linguistic knowledge of the underlying process, whereas recent approaches rely on the power and flexibility of sequence-t