Do you want to publish a course? Click here

Comparative Error Analysis in Neural and Finite-state Models for Unsupervised Character-level Transduction

تحليل الأخطاء المقارنة في نماذج الحالة العصبية والمتوقعة لتحويل مستوى الطابع

305   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Traditionally, character-level transduction problems have been solved with finite-state models designed to encode structural and linguistic knowledge of the underlying process, whereas recent approaches rely on the power and flexibility of sequence-to-sequence models with attention. Focusing on the less explored unsupervised learning scenario, we compare the two model classes side by side and find that they tend to make different types of errors even when achieving comparable performance. We analyze the distributions of different error classes using two unsupervised tasks as testbeds: converting informally romanized text into the native script of its language (for Russian, Arabic, and Kannada) and translating between a pair of closely related languages (Serbian and Bosnian). Finally, we investigate how combining finite-state and sequence-to-sequence models at decoding time affects the output quantitatively and qualitatively.



References used
https://aclanthology.org/
rate research

Read More

State-of-the-art approaches to spelling error correction problem include Transformer-based Seq2Seq models, which require large training sets and suffer from slow inference time; and sequence labeling models based on Transformer encoders like BERT, wh ich involve token-level label space and therefore a large pre-defined vocabulary dictionary. In this paper we present a Hierarchical Character Tagger model, or HCTagger, for short text spelling error correction. We use a pre-trained language model at the character level as a text encoder, and then predict character-level edits to transform the original text into its error-free form with a much smaller label space. For decoding, we propose a hierarchical multi-task approach to alleviate the issue of long-tail label distribution without introducing extra model parameters. Experiments on two public misspelling correction datasets demonstrate that HCTagger is an accurate and much faster approach than many existing models.
Abstract The metrics standardly used to evaluate Natural Language Generation (NLG) models, such as BLEU or METEOR, fail to provide information on which linguistic factors impact performance. Focusing on Surface Realization (SR), the task of convertin g an unordered dependency tree into a well-formed sentence, we propose a framework for error analysis which permits identifying which features of the input affect the models' results. This framework consists of two main components: (i) correlation analyses between a wide range of syntactic metrics and standard performance metrics and (ii) a set of techniques to automatically identify syntactic constructs that often co-occur with low performance scores. We demonstrate the advantages of our framework by performing error analysis on the results of 174 system runs submitted to the Multilingual SR shared tasks; we show that dependency edge accuracy correlate with automatic metrics thereby providing a more interpretable basis for evaluation; and we suggest ways in which our framework could be used to improve models and data. The framework is available in the form of a toolkit which can be used both by campaign organizers to provide detailed, linguistically interpretable feedback on the state of the art in multilingual SR, and by individual researchers to improve models and datasets.1
This paper describes the HEL-LJU submissions to the MultiLexNorm shared task on multilingual lexical normalization. Our system is based on a BERT token classification preprocessing step, where for each token the type of the necessary transformation i s predicted (none, uppercase, lowercase, capitalize, modify), and a character-level SMT step where the text is translated from original to normalized given the BERT-predicted transformation constraints. For some languages, depending on the results on development data, the training data was extended by back-translating OpenSubtitles data. In the final ordering of the ten participating teams, the HEL-LJU team has taken the second place, scoring better than the previous state-of-the-art.
Large pretrained language models using the transformer neural network architecture are becoming a dominant methodology for many natural language processing tasks, such as question answering, text classification, word sense disambiguation, text comple tion and machine translation. Commonly comprising hundreds of millions of parameters, these models offer state-of-the-art performance, but at the expense of interpretability. The attention mechanism is the main component of transformer networks. We present AttViz, a method for exploration of self-attention in transformer networks, which can help in explanation and debugging of the trained models by showing associations between text tokens in an input sequence. We show that existing deep learning pipelines can be explored with AttViz, which offers novel visualizations of the attention heads and their aggregations. We implemented the proposed methods in an online toolkit and an offline library. Using examples from news analysis, we demonstrate how AttViz can be used to inspect and potentially better understand what a model has learned.
Grammatical error correction (GEC) requires a set of labeled ungrammatical / grammatical sentence pairs for training, but obtaining such annotation can be prohibitively expensive. Recently, the Break-It-Fix-It (BIFI) framework has demonstrated strong results on learning to repair a broken program without any labeled examples, but this relies on a perfect critic (e.g., a compiler) that returns whether an example is valid or not, which does not exist for the GEC task. In this work, we show how to leverage a pretrained language model (LM) in defining an LM-Critic, which judges a sentence to be grammatical if the LM assigns it a higher probability than its local perturbations. We apply this LM-Critic and BIFI along with a large set of unlabeled sentences to bootstrap realistic ungrammatical / grammatical pairs for training a corrector. We evaluate our approach on GEC datasets on multiple domains (CoNLL-2014, BEA-2019, GMEG-wiki and GMEG-yahoo) and show that it outperforms existing methods in both the unsupervised setting (+7.7 F0.5) and the supervised setting (+0.5 F0.5).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا