مجردة، نقدم محول تحرير يعتمد على إعادة تحديد موضع (محرر)، مما يجعل توليد التسلسل مرنا بسلاسة يسمح للمستخدمين بسلاسة لتحديد التفضيلات في الاختيار المعجمي الإخراج.بناء على النماذج الأخيرة لتوليد التسلسل غير التلقائي (GU al.، 2019)، يولد المحرر تسلسلات جديدة من خلال تحرير الفرضيات الإثارة.يعتمد على عملية "إعادة وضع رواية" مصممة لتفكيك الاختيار المعجمي من قرارات تحديد المواقع Word، مع تمكين الأوراج الفعالة للتعلم التقليد والتحرير الموازي في وقت فك التشفير.من التجريبية، يستخدم المحرر القيود المعجمية الناعمة بشكل أكثر فعالية من محول Levenshtein (Gu et al.، 2019) أثناء تسريع فك التشفير بشكل كبير مقارنة بشكل كبير بالبحث عن شعاع (Post and Vilar، 2018).يحقق المحرر أيضا جودة ترجمة قابلة للمقارنة أو أفضل مع سرعة فك التشفير أسرع من مهام الترجمة الآلية الرومانية والإنجليزية والإنجليزية والإنجليزية.
Abstract We introduce an Edit-Based TransfOrmer with Repositioning (EDITOR), which makes sequence generation flexible by seamlessly allowing users to specify preferences in output lexical choice. Building on recent models for non-autoregressive sequence generation (Gu et al., 2019), EDITOR generates new sequences by iteratively editing hypotheses. It relies on a novel reposition operation designed to disentangle lexical choice from word positioning decisions, while enabling efficient oracles for imitation learning and parallel edits at decoding time. Empirically, EDITOR uses soft lexical constraints more effectively than the Levenshtein Transformer (Gu et al., 2019) while speeding up decoding dramatically compared to constrained beam search (Post and Vilar, 2018). EDITOR also achieves comparable or better translation quality with faster decoding speed than the Levenshtein Transformer on standard Romanian-English, English-German, and English-Japanese machine translation tasks.
References used
https://aclanthology.org/
The paper presents experiments in neural machine translation with lexical constraints into a morphologically rich language. In particular and we introduce a method and based on constrained decoding and which handles the inflected forms of lexical ent
Recently a number of approaches have been proposed to improve translation performance for document-level neural machine translation (NMT). However, few are focusing on the subject of lexical translation consistency. In this paper we apply one transla
It has been widely recognized that syntax information can help end-to-end neural machine translation (NMT) systems to achieve better translation. In order to integrate dependency information into Transformer based NMT, existing approaches either expl
Machine translation usually relies on parallel corpora to provide parallel signals for training. The advent of unsupervised machine translation has brought machine translation away from this reliance, though performance still lags behind traditional
Neural Machine Translation (NMT) approaches employing monolingual data are showing steady improvements in resource-rich conditions. However, evaluations using real-world lowresource languages still result in unsatisfactory performance. This work prop