تحليل السخرية وتحليل المعنويات هي مهام مهمة في فهم اللغة الطبيعية.السخرية هي نوع من التعبير حيث يتم تقليد قطبية المعنويات لعامل التدخل.في هذه الدراسة، استغلنا هذه العلاقة لتعزيز كلتا المهام من خلال اقتراح نهج تعليمي متعدد المهام باستخدام مزيج من الأشرطة الثابتة والسياقة.حقق نظامنا المقترح أفضل نتيجة في فرعية الكشف عن السخرية.
Sarcasm detection and sentiment analysis are important tasks in Natural Language Understanding. Sarcasm is a type of expression where the sentiment polarity is flipped by an interfering factor. In this study, we exploited this relationship to enhance both tasks by proposing a multi-task learning approach using a combination of static and contextualised embeddings. Our proposed system achieved the best result in the sarcasm detection subtask.
References used
https://aclanthology.org/
The prominence of figurative language devices, such as sarcasm and irony, poses serious challenges for Arabic Sentiment Analysis (SA). While previous research works tackle SA and sarcasm detection separately, this paper introduces an end-to-end deep
Sarcasm detection is one of the top challenging tasks in text classification, particularly for informal Arabic with high syntactic and semantic ambiguity. We propose two systems that harness knowledge from multiple tasks to improve the performance of
We propose a new approach for learning contextualised cross-lingual word embeddings based on a small parallel corpus (e.g. a few hundred sentence pairs). Our method obtains word embeddings via an LSTM encoder-decoder model that simultaneously transla
Within the last few years, the number of Arabic internet users and Arabic online content is in exponential growth. Dealing with Arabic datasets and the usage of non-explicit sentences to express an opinion are considered to be the major challenges in
Since their inception, transformer-based language models have led to impressive performance gains across multiple natural language processing tasks. For Arabic, the current state-of-the-art results on most datasets are achieved by the AraBERT languag