No Arabic abstract
We derive a generalized zero-range pseudopotential applicable to all partial wave solutions to the Schroedinger equation based on a delta-shell potential in the limit that the shell radius approaches zero. This properly models all higher order multipole moments not accounted for with a monopolar delta function at the origin, as used in the familiar Fermi pseudopotential for s-wave scattering. By making the strength of the potential energy dependent, we derive self-consistent solutions for the entire energy spectrum of the realistic potential. We apply this to study two particles in an isotropic harmonic trap, interacting through a central potential, and derive analytic expressions for the energy eigenstates and eigenvalues.
We present a determination of nucleon-nucleon scattering phase shifts for l >= 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For l > 0, this is the first lattice QCD calculation using the Luscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU(3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to m_pi = m_K ~ 800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V ~ (3.5 fm)^3 and V ~ (4.6 fm)^3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Luscher formalism for two-nucleon systems.
Partial wave theory of a two dimensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard disk like potential and the magnetic flux is examined. Since the nonlocal influence of magnetic flux on the charged particles is universal, the nonlocal effect in hard disk case is expected to appear in quite general potential system and will be useful in understanding some phenomena in mesoscopic phyiscs.
Early data on $K^-$ induced reactions off protons are collected and used in a coupled-channel partial wave analysis (PWA). Data which had been published in the form of Legendre coefficients are included in the PWA. In a {it primary} fit using 3* and 4* resonances only, we observe some significant discrepancies with the data. In a systematic search for new $Lambda$ and $Sigma$ hyperon resonances, additional candidates are found. The significance of the known and of the additional resonances is evaluated. Seventeen resonances listed with 1* or 2* and one resonance listed with 3* in the Review of Particle Properties cannot be confirmed, five new hyperons are suggested. The partial-wave amplitudes deduced in this analysis are compared to those from other analyses.
We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau-Hyman, Rosenau-Pikovsky and Rosenau-Hyman-Staley equations, and the other with solutions including peakons in a system which generalizes the Camassa-Holm, Degasperis-Procesi and Dullin-Gotwald-Holm equations. In both cases, we obtain new classes of solutions not studied before.
Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Results are discussed in terms of both partial-wave and direct reconstruction amplitudes.