Do you want to publish a course? Click here

Partial Wave Analysis of Scattering with Nonlocal Aharonov-Bohm Effect

67   0   0.0 ( 0 )
 Added by Yueh-Nan Chen
 Publication date 2003
  fields Physics
and research's language is English
 Authors de-Hone Lin




Ask ChatGPT about the research

Partial wave theory of a two dimensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard disk like potential and the magnetic flux is examined. Since the nonlocal influence of magnetic flux on the charged particles is universal, the nonlocal effect in hard disk case is expected to appear in quite general potential system and will be useful in understanding some phenomena in mesoscopic phyiscs.



rate research

Read More

94 - De-Hone Lin 2003
Partial wave theory of a three dmensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard shere like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in quite general potential system and will be useful in understanding some other phenomena in mesoscopic phyiscs.
The Aharanov-Bohm (AB) effect, which predicts that a magnetic field strongly influences the wave function of an electrically charged particle, is investigated in a three site system in terms of the quantum control by an additional dephasing source. The AB effect leads to a non-monotonic dependence of the steady-state current on the gauge phase associated with the molecular ring. This dependence is sensitive to site energy, temperature, and dephasing, and can be explained using the concept of the dark state. Although the phase effect vanishes in the steady-state current for strong dephasing, the phase dependence remains visible in an associated waiting-time distribution, especially at short times. Interestingly, the phase rigidity (i.e., the symmetry of the AB phase) observed in the steady-state current is now broken in the waiting-time statistics, which can be explained by the interference between transfer pathways.
The Aharonov-Bohm effect is the prime example of a zero-field-strength configuration where a non-trivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a Type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.
We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of $SU(N)$ generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.
In this work we consider a quantum variation of the usual Aharonov-Bohm effect with two solenoids sufficiently close one to the other so that (external) electron cannot propagate between two solenoids but only around both solenoids. Here magnetic field (or classical vector potential of the electromagnetic field) acting at quantum propagating (external) electron represents the quantum mechanical average value or statistical mixture. It is obtained by wave function of single (internal, quantum propagating within some solenoid wire) electron (or homogeneous ensemble of such (internal) electrons) representing a quantum superposition with two practically non-interfering terms. All this implies that phase difference and interference shape translation of the quantum propagating (external) electron represent the quantum mechanical average value or statistical mixture. On the other hand we consider a classical analogy and variation of the usual Aharonov-Bohm effect in which Aharonov-Bohm solenoid is used for the primary coil inside secondary large coil in the remarkable classical Faraday experiment of the electromagnetic induction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا