Do you want to publish a course? Click here

Hyperon I: Partial wave amplitudes for $K^-p$ scattering

102   0   0.0 ( 0 )
 Added by Eberhard Klempt
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Early data on $K^-$ induced reactions off protons are collected and used in a coupled-channel partial wave analysis (PWA). Data which had been published in the form of Legendre coefficients are included in the PWA. In a {it primary} fit using 3* and 4* resonances only, we observe some significant discrepancies with the data. In a systematic search for new $Lambda$ and $Sigma$ hyperon resonances, additional candidates are found. The significance of the known and of the additional resonances is evaluated. Seventeen resonances listed with 1* or 2* and one resonance listed with 3* in the Review of Particle Properties cannot be confirmed, five new hyperons are suggested. The partial-wave amplitudes deduced in this analysis are compared to those from other analyses.



rate research

Read More

49 - I.Zychor , V.Koptev , M.Buscher 2005
Indications for the production of a neutral excited hyperon in the reaction pp -> p K^+ Y^{0*} are observed in an experiment performed with the ANKE spectrometer at COSY-Julich at a beam momentum of 3.65 GeV/c. Two final states were investigated simultaneously, viz. Y^{0*} -> pi^+X^- and pi^-X^+, and consistent results were obtained in spite of the quite different experimental conditions. The parameters of the hyperon state are M(Y^{0*})= (1480 +/- 15) MeV/c^2 and Gamma(Y^{0*})= (60 +/- 15) MeV/c^2. The production cross section is of the order of few hundred nanobarns. Since the isospin of the Y^{0*} has not been determined here, it could either be an observation of the Sigma(1480), a one-star resonance of the PDG tables, or alternatively a Lambda hyperon. Relativistic quark models for the baryon spectrum do not predict any excited hyperon in this mass range and so the Y^{0*} may be of exotic nature.
75 - B. C. Hunt , D. M. Manley 2018
Results from a partial-wave analysis of the reaction $gamma p rightarrow K^+ Lambda$ are presented. The reaction is dominated by the $S_{11}(1650)$ and $P_{13}(1720)$ resonances at low energies and by $P_{13}(1900)$ at higher energies. There are small contributions from all amplitudes up to and including $G_{17}$, with $F_{17}$ necessary for obtaining a good fit of several of the spin observables. We find evidence for $P_{11}$(1880), $D_{13}$(2120), and $D_{15}$(2080) resonances, as well as a possible $F_{17}$ resonance near 2300 MeV, which is expected from quark-model predictions. Some predictions for $gamma n to K^0 Lambda$ are also included.
We present calculations of the invariant mass spectra of the $Lambda$p system for the exclusive $p p to K^+ Lambda p$ reaction with the aim of studying the final state interaction between the $Lambda$-hyperon and the proton. The reaction is described within a meson exchange framework and the final state $Lambda p$ interaction is incorporated through an off-shell t-matrix for the $Lambda p to Lambda p$ scattering, constructed using the available hyperon-nucleon (YN) potentials. The cross sections are found to be sensitive to the type of YN potential used especially at the $Lambda$ and $Sigma$ production thresholds. Hence, data on this exclusive reaction, which can be used to constrain the YN potentials are desirable.
Low-energy data on the three charge states in $gamma p to K^+(Sigmapi)$ from CLAS at JLab, on $K^-pto pi^0pi^0Lambda$ and $pi^0pi^0Sigma$ from the Crystal Ball at BNL, bubble chamber data on $K^-ptopi^-pi^+pi^{pm}Sigma^{mp}$, low-energy total cross sections on $K^-$ induced reactions, and data on the $K^-p$ atom are fitted with the BnGa partial-wave-analysis program. We find that the data can be fitted well with just one isoscalar spin-1/2 negative-parity pole, the $Lambda(1405)$, and background contributions.
Employing the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction $p(3.5GeV)+pto pK^{+}Lambda$. This reaction might contain information about the kaonic cluster $ppK^-$ via its decay into $pLambda$. Due to interference effects in our coherent description of the data, a hypothetical $overline{K}NN$ (or, specifically $ppK^-$) cluster signal must not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectra like $pLambda$. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a $overline{K}NN$ cluster. At a confidence level of CL$_{s}$=95% such a cluster can not contribute more than 2-12% to the total cross section with a $pK^{+}Lambda$ final state, which translates into a production cross-section between 0.7 $mu b$ and 4.2 $mu b$, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا